SULJE VALIKKO

avaa valikko

Dmitry A. Smirnov | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Extracting Knowledge From Time Series - An Introduction to Nonlinear Empirical Modeling
Boris P. Bezruchko; Dmitry A. Smirnov
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2010)
Kovakantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Extracting Knowledge From Time Series - An Introduction to Nonlinear Empirical Modeling
Boris P. Bezruchko; Dmitry A. Smirnov
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2012)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Extracting Knowledge From Time Series - An Introduction to Nonlinear Empirical Modeling
49,60 €
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Sivumäärä: 410 sivua
Asu: Kovakantinen kirja
Painos: 2010
Julkaisuvuosi: 2010, 05.09.2010 (lisätietoa)
Kieli: Englanti
Tuotesarja: Springer Series in Synergetics
Mathematical modelling is ubiquitous. Almost every book in exact science touches on mathematical models of a certain class of phenomena, on more or less speci?c approaches to construction and investigation of models, on their applications, etc. As many textbooks with similar titles, Part I of our book is devoted to general qu- tions of modelling. Part II re?ects our professional interests as physicists who spent much time to investigations in the ?eld of non-linear dynamics and mathematical modelling from discrete sequences of experimental measurements (time series). The latter direction of research is known for a long time as “system identi?cation” in the framework of mathematical statistics and automatic control theory. It has its roots in the problem of approximating experimental data points on a plane with a smooth curve. Currently, researchers aim at the description of complex behaviour (irregular, chaotic, non-stationary and noise-corrupted signals which are typical of real-world objects and phenomena) with relatively simple non-linear differential or difference model equations rather than with cumbersome explicit functions of time. In the second half of the twentieth century, it has become clear that such equations of a s- ?ciently low order can exhibit non-trivial solutions that promise suf?ciently simple modelling of complex processes; according to the concepts of non-linear dynamics, chaotic regimes can be demonstrated already by a third-order non-linear ordinary differential equation, while complex behaviour in a linear model can be induced either by random in?uence (noise) or by a very high order of equations.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Extracting Knowledge From Time Series - An Introduction to Nonlinear Empirical Modelingzoom
Näytä kaikki tuotetiedot
ISBN:
9783642126000
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste