SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Dipayan Sarkar | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 6 tuotetta
Haluatko tarkentaa hakukriteerejä?



Ensemble Machine Learning Cookbook - Over 35 practical recipes to explore ensemble machine learning techniques using Python
Dipayan Sarkar; Vijayalakshmi Natarajan
Packt Publishing Limited (2019)
Pehmeäkantinen kirja
60,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Functional Foods and Biotechnology - Sources of Functional Foods and Ingredients
Kalidas Shetty; Dipayan Sarkar
Taylor & Francis Ltd (2019)
Kovakantinen kirja
213,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Deep Learning with R Cookbook - Over 45 unique recipes to delve into neural network techniques using R 3.5.x
Swarna Gupta; Rehan Ali Ansari; Dipayan Sarkar
Packt Publishing Limited (2020)
Pehmeäkantinen kirja
59,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Functional Foods and Biotechnology, Two Volume Set
Kalidas Shetty; Dipayan Sarkar
Taylor & Francis Ltd (2020)
Moniviestin
213,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Functional Foods and Biotechnology - Biotransformation and Analysis of Functional Foods and Ingredients
Kalidas Shetty; Dipayan Sarkar
Taylor & Francis Ltd (2020)
Kovakantinen kirja
213,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Recent Advances in Psychiatry
Anil Kakunje; Mrugesh Vaishnav; Sujit Sarkhel; Dipayan Sarkar
Jaypee Brothers Medical Publishers (2023)
Pehmeäkantinen kirja
76,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Ensemble Machine Learning Cookbook - Over 35 practical recipes to explore ensemble machine learning techniques using Python
60,60 €
Packt Publishing Limited
Sivumäärä: 336 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2019, 31.01.2019 (lisätietoa)
Kieli: Englanti
Implement machine learning algorithms to build ensemble models using Keras, H2O, Scikit-Learn, Pandas and more

Key Features

Apply popular machine learning algorithms using a recipe-based approach
Implement boosting, bagging, and stacking ensemble methods to improve machine learning models
Discover real-world ensemble applications and encounter complex challenges in Kaggle competitions

Book DescriptionEnsemble modeling is an approach used to improve the performance of machine learning models. It combines two or more similar or dissimilar machine learning algorithms to deliver superior intellectual powers. This book will help you to implement popular machine learning algorithms to cover different paradigms of ensemble machine learning such as boosting, bagging, and stacking.

The Ensemble Machine Learning Cookbook will start by getting you acquainted with the basics of ensemble techniques and exploratory data analysis. You'll then learn to implement tasks related to statistical and machine learning algorithms to understand the ensemble of multiple heterogeneous algorithms. It will also ensure that you don't miss out on key topics, such as like resampling methods. As you progress, you’ll get a better understanding of bagging, boosting, stacking, and working with the Random Forest algorithm using real-world examples. The book will highlight how these ensemble methods use multiple models to improve machine learning results, as compared to a single model. In the concluding chapters, you'll delve into advanced ensemble models using neural networks, natural language processing, and more. You’ll also be able to implement models such as fraud detection, text categorization, and sentiment analysis.

By the end of this book, you'll be able to harness ensemble techniques and the working mechanisms of machine learning algorithms to build intelligent models using individual recipes.

What you will learn

Understand how to use machine learning algorithms for regression and classification problems
Implement ensemble techniques such as averaging, weighted averaging, and max-voting
Get to grips with advanced ensemble methods, such as bootstrapping, bagging, and stacking
Use Random Forest for tasks such as classification and regression
Implement an ensemble of homogeneous and heterogeneous machine learning algorithms
Learn and implement various boosting techniques, such as AdaBoost, Gradient Boosting Machine, and XGBoost

Who this book is forThis book is designed for data scientists, machine learning developers, and deep learning enthusiasts who want to delve into machine learning algorithms to build powerful ensemble models. Working knowledge of Python programming and basic statistics is a must to help you grasp the concepts in the book.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 2-3 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Ensemble Machine Learning Cookbook - Over 35 practical recipes to explore ensemble machine learning techniques using Pythonzoom
Näytä kaikki tuotetiedot
ISBN:
9781789136609
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste