Nonlinear and Adaptive Control with Applications provides a detailed treatment of the design of robust adaptive controllers for nonlinear systems with uncertainties. The authors employ a new tool based on the ideas of system immersion and manifold invariance. Departing, in part, from the Lyapunov-function approach of classical control, new algorithms are delivered for the construction of robust asymptotically-stabilising and adaptive control laws for nonlinear systems. The methods proposed lead to modular schemes. These algorithms cater for nonlinear systems with both parametric and dynamic uncertainties. This innovative strategy is illustrated with several examples and case studies from real applications: power converters, electrical machines, mechanical systems, autonomous aircraft and computer vision. Researchers working on adaptive and nonlinear control theory or on control applications will find this monograph of interest.