Gustavo Carneiro (ed.); Diana Mateus (ed.); Loïc Peter (ed.); Andrew Bradley (ed.); João Manuel R. S. Tavares (ed.); Belagi Springer (2016) Pehmeäkantinen kirja
M. Jorge Cardoso; Tal Arbel; Su-Lin Lee; Veronika Cheplygina; Simone Balocco; Diana Mateus; Guillaume Zahnd; Maier-Hein Springer International Publishing AG (2017) Pehmeäkantinen kirja
Anne L. Martel; Purang Abolmaesumi; Danail Stoyanov; Diana Mateus; Maria A. Zuluaga; S. Kevin Zhou; Daniel Racoceanu; Jos Springer Nature Switzerland AG (2020) Pehmeäkantinen kirja
Anne L. Martel; Purang Abolmaesumi; Danail Stoyanov; Diana Mateus; Maria A. Zuluaga; S. Kevin Zhou; Daniel Racoceanu; Jos Springer Nature Switzerland AG (2020) Pehmeäkantinen kirja
Anne L. Martel; Purang Abolmaesumi; Danail Stoyanov; Diana Mateus; Maria A. Zuluaga; S. Kevin Zhou; Daniel Racoceanu; Jos Springer Nature Switzerland AG (2020) Pehmeäkantinen kirja
Anne L. Martel; Purang Abolmaesumi; Danail Stoyanov; Diana Mateus; Maria A. Zuluaga; S. Kevin Zhou; Daniel Racoceanu; Jos Springer Nature Switzerland AG (2020) Pehmeäkantinen kirja
Anne L. Martel; Purang Abolmaesumi; Danail Stoyanov; Diana Mateus; Maria A. Zuluaga; S. Kevin Zhou; Daniel Racoceanu; Jos Springer Nature Switzerland AG (2020) Pehmeäkantinen kirja
Anne L. Martel; Purang Abolmaesumi; Danail Stoyanov; Diana Mateus; Maria A. Zuluaga; S. Kevin Zhou; Daniel Racoceanu; Jos Springer Nature Switzerland AG (2020) Pehmeäkantinen kirja
Anne L. Martel; Purang Abolmaesumi; Danail Stoyanov; Diana Mateus; Maria A. Zuluaga; S. Kevin Zhou; Daniel Racoceanu; Jos Springer Nature Switzerland AG (2020) Pehmeäkantinen kirja
This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.
The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.