SULJE VALIKKO

avaa valikko

Dani Gamerman | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Markov Chain Monte Carlo - Stochastic Simulation for Bayesian Inference, Second Edition
Dani Gamerman; Hedibert Freita Lopes; Hedibert F. Lopes
Taylor & Francis Inc (2006)
Kovakantinen kirja
132,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Building a Platform for Data-Driven Pandemic Prediction - From Data Modelling to Visualisation - The CovidLP Project
Dani Gamerman; Marcos O. Prates; Thais Paiva; Vinicius D. Mayrink
Taylor & Francis Ltd (2021)
Pehmeäkantinen kirja
81,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Building a Platform for Data-Driven Pandemic Prediction - From Data Modelling to Visualisation - The CovidLP Project
Dani Gamerman; Marcos O. Prates; Thais Paiva; Vinicius D. Mayrink
Taylor & Francis Ltd (2021)
Kovakantinen kirja
182,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Statistical Inference - An Integrated Approach, Second Edition
Helio S. Migon; Dani Gamerman; Francisco Louzada
Taylor & Francis Inc (2014)
Kovakantinen kirja
132,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Markov Chain Monte Carlo - Stochastic Simulation for Bayesian Inference, Second Edition
132,70 €
Taylor & Francis Inc
Sivumäärä: 342 sivua
Asu: Kovakantinen kirja
Painos: 2nd edition
Julkaisuvuosi: 2006, 10.05.2006 (lisätietoa)
Kieli: Englanti
While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition presents a concise, accessible, and comprehensive introduction to the methods of this valuable simulation technique. The second edition includes access to an internet site that provides the code, written in R and WinBUGS, used in many of the previously existing and new examples and exercises. More importantly, the self-explanatory nature of the codes will enable modification of the inputs to the codes and variation on many directions will be available for further exploration.

Major changes from the previous edition:

· More examples with discussion of computational details in chapters on Gibbs sampling and Metropolis-Hastings algorithms

· Recent developments in MCMC, including reversible jump, slice sampling, bridge sampling, path sampling, multiple-try, and delayed rejection

· Discussion of computation using both R and WinBUGS

· Additional exercises and selected solutions within the text, with all data sets and software available for download from the Web

· Sections on spatial models and model adequacy

The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. The book will appeal to everyone working with MCMC techniques, especially research and graduate statisticians and biostatisticians, and scientists handling data and formulating models. The book has been substantially reinforced as a first reading of material on MCMC and, consequently, as a textbook for modern Bayesian computation and Bayesian inference courses.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Markov Chain Monte Carlo - Stochastic Simulation for Bayesian Inference, Second Editionzoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste