The articles in this volume reflect a subsequent development after a scientific meeting entitled Carleman Estimates and Control Theory, held in Cartona in September 1999. The 14 research-level articles, written by experts, focus on new results on Carleman estimates and their applications to uniqueness and controlla- bility of partial differential equations and systems. The main topics are unique continuation for elliptic PDEs and systems, con- trol theory and inverse problems. New results on strong uniqueness for second or higher order operators are explored in detail in several papers. In the area of control theory. the reader will find applications of Carleman estimates to stabiliza- tion, observability and exact control for the wave and the SchrOdinger equations. A final paper presents a challenging list of open problems on the topic of control- lability of linear and sernilinear heat equations. The papers contain exhaustive and essentially self-contained proofs directly ac- cessible to mathematicians, physicists, and graduate students with an elementary background in PDEs. Contributors are L. Aloui, M. Bellassoued, N. Burq, F. Colombini, B. Dehman, C. Grammatico, M. Khenissi, H. Koch, P. Le Borgne, N. Lerner, T. Nishitani. T. Okaji, K.D. Phung, R. Regbaoui, X. Saint Raymond, D. Tataru, and E. Zuazua.