SULJE VALIKKO

avaa valikko

Chiu-Hsieh Hsu | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Multiple Imputation of Missing Data in Practice - Basic Theory and Analysis Strategies
Yulei He; Guangyu Zhang; Chiu-Hsieh Hsu
Taylor & Francis Inc (2021)
Kovakantinen kirja
116,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Multiple Imputation of Missing Data in Practice - Basic Theory and Analysis Strategies
Yulei He; Guangyu Zhang; Chiu-Hsieh Hsu
Taylor & Francis Ltd (2024)
Pehmeäkantinen kirja
74,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Multiple Imputation of Missing Data in Practice - Basic Theory and Analysis Strategies
116,40 €
Taylor & Francis Inc
Sivumäärä: 476 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2021, 26.11.2021 (lisätietoa)
Kieli: Englanti
Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis. Over the past 40 years or so, multiple imputation has gone through rapid development in both theories and applications. It is nowadays the most versatile, popular, and effective missing-data strategy that is used by researchers and practitioners across different fields. There is a strong need to better understand and learn about multiple imputation in the research and practical community.

Accessible to a broad audience, this book explains statistical concepts of missing data problems and the associated terminology. It focuses on how to address missing data problems using multiple imputation. It describes the basic theory behind multiple imputation and many commonly-used models and methods. These ideas are illustrated by examples from a wide variety of missing data problems. Real data from studies with different designs and features (e.g., cross-sectional data, longitudinal data, complex surveys, survival data, studies subject to measurement error, etc.) are used to demonstrate the methods. In order for readers not only to know how to use the methods, but understand why multiple imputation works and how to choose appropriate methods, simulation studies are used to assess the performance of the multiple imputation methods. Example datasets and sample programming code are either included in the book or available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book).

Key Features






Provides an overview of statistical concepts that are useful for better understanding missing data problems and multiple imputation analysis



Provides a detailed discussion on multiple imputation models and methods targeted to different types of missing data problems (e.g., univariate and multivariate missing data problems, missing data in survival analysis, longitudinal data, complex surveys, etc.)



Explores measurement error problems with multiple imputation



Discusses analysis strategies for multiple imputation diagnostics



Discusses data production issues when the goal of multiple imputation is to release datasets for public use, as done by organizations that process and manage large-scale surveys with nonresponse problems



For some examples, illustrative datasets and sample programming code from popular statistical packages (e.g., SAS, R, WinBUGS) are included in the book. For others, they are available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book)

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Multiple Imputation of Missing Data in Practice - Basic Theory and Analysis Strategieszoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste