SULJE VALIKKO

avaa valikko

Carolina Scarton | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Quality Estimation for Machine Translation
Lucia Specia; Carolina Scarton; Gustavo Henrique Paetzold
MORGAN&CLAYPOOL (2018)
Pehmeäkantinen kirja
90,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Quality Estimation for Machine Translation
Lucia Specia; Carolina Scarton; Gustavo Henrique Paetzold
MORGAN&CLAYPOOL (2018)
Kovakantinen kirja
117,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Computational Processing of the Portuguese Language - 15th International Conference, PROPOR 2022, Fortaleza, Brazil, March 21–23
Vládia Pinheiro; Pablo Gamallo; Raquel Amaro; Carolina Scarton; Fernando Batista; Diego Silva; Catarina Magro; Hug Pinto
Springer Nature Switzerland AG (2022)
Pehmeäkantinen kirja
78,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Quality Estimation for Machine Translation
Lucia Specia; Carolina Scarton; Gustavo Henrique Paetzold
Springer International Publishing AG (2018)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Quality Estimation for Machine Translation
90,50 €
MORGAN&CLAYPOOL
Sivumäärä: 162 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2018, 25.09.2018 (lisätietoa)
Kieli: Englanti
Tuotesarja: Synthesis Lectures on Human La
Many applications within natural language processing involve performing text-to-text transformations, i.e., given a text in natural language as input, systems are required to produce a version of this text (e.g., a translation), also in natural language, as output. Automatically evaluating the output of such systems is an important component in developing text-to-text applications. Two approaches have been proposed for this problem: (i) to compare the system outputs against one or more reference outputs using string matching-based evaluation metrics and (ii) to build models based on human feedback to predict the quality of system outputs without reference texts. Despite their popularity, reference-based evaluation metrics are faced with the challenge that multiple good (and bad) quality outputs can be produced by text-to-text approaches for the same input. This variation is very hard to capture, even with multiple reference texts. In addition, reference-based metrics cannot be used in production (e.g., online machine translation systems), when systems are expected to produce outputs for any unseen input. In this book, we focus on the second set of metrics, so-called Quality Estimation (QE) metrics, where the goal is to provide an estimate on how good or reliable the texts produced by an application are without access to gold-standard outputs. QE enables different types of evaluation that can target different types of users and applications. Machine learning techniques are used to build QE models with various types of quality labels and explicit features or learnt representations, which can then predict the quality of unseen system outputs. This book describes the topic of QE for text-to-text applications, covering quality labels, features, algorithms, evaluation, uses, and state-of-the-art approaches. It focuses on machine translation as application, since this represents most of the QE work done to date. It also briefly describes QE for several other applications, including text simplification, text summarization, grammatical error correction, and natural language generation.

Series edited by: Graeme Hirst

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Quality Estimation for Machine Translationzoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste