SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Borja Peleato | Akateeminen Kirjakauppa

DISTRIBUTED OPTIMIZATION AND STATISTICAL LEARNING VIA THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
Stephen Boyd; Neal Parikh; Eric Chu; Borja Peleato; Jonathan Eckstein
now publishers Inc (2011)
Pehmeäkantinen kirja
87,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
87,30 €
now publishers Inc
Sivumäärä: 140 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2011, 30.06.2011 (lisätietoa)
Kieli: Englanti
Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable.

This book argues that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas-Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for ?1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, it discusses applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. It also discusses general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multiplierszoom
Näytä kaikki tuotetiedot
ISBN:
9781601984609
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste