SULJE VALIKKO

avaa valikko

Andrey Kolobov | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Planning with Markov Decision Processes - An AI Perspective
Mausam; Andrey Kolobov
Morgan & Claypool Publishers (2012)
Pehmeäkantinen kirja
66,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Personalized Computational Hemodynamics - Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy
Yuri Vassilevski; Maxim Olshanskii; Sergey Simakov; Andrey Kolobov; Alexander Danilov
Elsevier Science Publishing Co Inc (2020)
Pehmeäkantinen kirja
127,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Planning with Markov Decision Processes : An AI Perspective
Mausam; Andrey Kolobov
Springer (2012)
Pehmeäkantinen kirja
36,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Placentitis and Perinatal Infections : Issues of Pathology and Pathogenesis
Vsevolod Zinserling; Andrey Kolobov; Sebastian Lucas
Springer (2025)
Kovakantinen kirja
134,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Planning with Markov Decision Processes - An AI Perspective
66,10 €
Morgan & Claypool Publishers
Sivumäärä: 210 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2012, 03.07.2012 (lisätietoa)
Kieli: Englanti
Markov Decision Processes (MDPs) are widely popular in Artificial Intelligence for modeling sequential decision-making scenarios with probabilistic dynamics. They are the framework of choice when designing an intelligent agent that needs to act for long periods of time in an environment where its actions could have uncertain outcomes. MDPs are actively researched in two related subareas of AI, probabilistic planning and reinforcement learning. Probabilistic planning assumes known models for the agent's goals and domain dynamics, and focuses on determining how the agent should behave to achieve its objectives. On the other hand, reinforcement learning additionally learns these models based on the feedback the agent gets from the environment.

This book provides a concise introduction to the use of MDPs for solving probabilistic planning problems, with an emphasis on the algorithmic perspective. It covers the whole spectrum of the field, from the basics to state-of-the-art optimal and approximation algorithms. We first describe the theoretical foundations of MDPs and the fundamental solution techniques for them. We then discuss modern optimal algorithms based on heuristic search and the use of structured representations. A major focus of the book is on the numerous approximation schemes for MDPs that have been developed in the AI literature. These include determinization-based approaches, sampling techniques, heuristic functions, dimensionality reduction, and hierarchical representations. Finally, we briefly introduce several extensions of the standard MDP classes that model and solve even more complex planning problems.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Planning with Markov Decision Processes - An AI Perspectivezoom
Näytä kaikki tuotetiedot
ISBN:
9781608458868
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste