SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Andrei V. Gribok | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Optimization Techniques in Computer Vision : Ill-Posed Problems and Regularization
Mongi A. Abidi; Andrei V. Gribok; Joonki Paik
Springer (2016)
Kovakantinen kirja
126,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Optimization Techniques in Computer Vision - Ill-Posed Problems and Regularization
Mongi A. Abidi; Andrei V. Gribok; Joonki Paik
Springer International Publishing AG (2018)
Pehmeäkantinen kirja
88,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Optimization Techniques in Computer Vision : Ill-Posed Problems and Regularization
126,80 €
Springer
Sivumäärä: 293 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2016, 16.12.2016 (lisätietoa)
Kieli: Englanti
Tuotesarja: Advances in Computer Vision and Pattern Recognition
This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems.The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc.

Optimization plays a major role in a wide variety of theories for image processing and computer vision. Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision.


Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Optimization Techniques in Computer Vision : Ill-Posed Problems and Regularizationzoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste