SULJE VALIKKO

avaa valikko

Andras I. Stipsicz | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Floer Homology, Gauge Theory, and Low-dimensional Topology
David A. Ellwood; Peter S. Ozsvath; Andras I. Stipsicz; Zoltan Szabo
American Mathematical Society (2006)
Pehmeäkantinen kirja
82,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
4-Manifolds and Kirby Calculus
Robert E. Gompf; Andras I. Stipsicz
American Mathematical Society (1999)
Pehmeäkantinen kirja
98,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Grid Homology for Knots and Links
Peter S. Ozsvath; Andras I. Stipsicz; Zoltan Szabo
American Mathematical Society (2015)
Kovakantinen kirja
219,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Grid Homology for Knots and Links
Peter S. Ozsváth; Andras I. Stipsicz; Zoltán Szabó
American Mathematical Society (2015)
Pehmeäkantinen kirja
134,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Floer Homology, Gauge Theory, and Low-dimensional Topology
82,40 €
American Mathematical Society
Sivumäärä: 297 sivua
Asu: Pehmeäkantinen kirja
Painos: illustrated Edition
Julkaisuvuosi: 2006, 13.03.2007 (lisätietoa)
Mathematical gauge theory studies connections on principal bundles, or, more precisely, the solution spaces of certain partial differential equations for such connections. Historically, these equations have come from mathematical physics, and play an important role in the description of the electro-weak and strong nuclear forces. The use of gauge theory as a tool for studying topological properties of four-manifolds was pioneered by the fundamental work of Simon Donaldson in the early 1980s, and was revolutionized by the introduction of the Seiberg-Witten equations in the mid-1990s. Since the birth of the subject, it has retained its close connection with symplectic topology.The analogy between these two fields of study was further underscored by Andreas Floer's construction of an infinite-dimensional variant of Morse theory that applies in two a priori different contexts: either to define symplectic invariants for pairs of Lagrangian submanifolds of a symplectic manifold, or to define topological invariants for three-manifolds, which fit into a framework for calculating invariants for smooth four-manifolds. 'Heegaard Floer homology', the recently-discovered invariant for three- and four-manifolds, comes from an application of Lagrangian Floer homology to spaces associated to Heegaard diagrams. Although this theory is conjecturally isomorphic to Seiberg-Witten theory, it is more topological and combinatorial in flavor and thus easier to work with in certain contexts.The interaction between gauge theory, low-dimensional topology, and symplectic geometry has led to a number of striking new developments in these fields. The aim of this volume is to introduce graduate students and researchers in other fields to some of these exciting developments, with a special emphasis on the very fruitful interplay between disciplines. This volume is based on lecture courses and advanced seminars given at the 2004 Clay Mathematics Institute Summer School at the Alfred Renyi Institute of Mathematics in Budapest, Hungary. Several of the authors have added a considerable amount of additional material to that presented at the school, and the resulting volume provides a state-of-the-art introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Floer Homology, Gauge Theory, and Low-dimensional Topology
Näytä kaikki tuotetiedot
ISBN:
9780821838457
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste