SULJE VALIKKO

avaa valikko

Amadeu Delshams | Akateeminen Kirjakauppa

A GEOMETRIC MECHANISM FOR DIFFUSION IN HAMILTONIAN SYSTEMS OVERCOMING THE LARGE GAP PROBLEM - HEURISTICS AND RIGOROUS VERIFICATI

A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem - Heuristics and Rigorous Verificati
Amadeu Delshams; Rafael De La Llave; Tere M. Seara
American Mathematical Society (2005)
Pehmeäkantinen kirja
81,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem - Heuristics and Rigorous Verificati
81,20 €
American Mathematical Society
Sivumäärä: 141 sivua
Asu: Pehmeäkantinen kirja
Painos: illustrated Edition
Julkaisuvuosi: 2005, 30.12.2005 (lisätietoa)
Kieli: Englanti
We introduce a geometric mechanism for diffusion in a priori unstable nearly integrable dynamical systems. It is based on the observation that resonances, besides destroying the primary KAM tori, create secondary tori and tori of lower dimension. We argue that these objects created by resonances can be incorporated in transition chains taking the place of the destroyed primary KAM tori. We establish rigorously the existence of this mechanism in a simple model that has been studied before.The main technique is to develop a toolkit to study, in a unified way, tori of different topologies and their invariant manifolds, their intersections as well as shadowing properties of these bi-asymptotic orbits. This toolkit is based on extending and unifying standard techniques. A new tool used here is the scattering map of normally hyperbolic invariant manifolds. The model considered is a one-parameter family, which for $varepsilon = 0$ is an integrable system. We give a small number of explicit conditions the jet of order $3$ of the family that, if verified imply diffusion. The conditions are just that some explicitely constructed functionals do not vanish identically or have non-degenerate critical points, etc. An attractive feature of the mechanism is that the transition chains are shorter in the places where the heuristic intuition and numerical experimentation suggests that the diffusion is strongest.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem - Heuristics and Rigorous Verificati
Näytä kaikki tuotetiedot
ISBN:
9780821838242
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste