SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Alexia Prskawetz (ed.) | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Causal Analysis in Population Studies : Concepts, Methods, Applications
Henriette Engelhardt (ed.); Hans-Peter Kohler (ed.); Alexia Fürnkranz-Prskawetz (ed.)
Springer (2010)
Pehmeäkantinen kirja
101,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Human Capital and Economic Growth : The Impact of Health, Education and Demographic Change
Alberto Bucci (ed.); Klaus Prettner (ed.); Alexia Prskawetz (ed.)
Palgrave Macmillan (2019)
Kovakantinen kirja
125,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Human Capital and Economic Growth : The Impact of Health, Education and Demographic Change
Alberto Bucci (ed.); Klaus Prettner (ed.); Alexia Prskawetz (ed.)
Palgrave Macmillan (2021)
Pehmeäkantinen kirja
125,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Causal Analysis in Population Studies : Concepts, Methods, Applications
101,40 €
Springer
Sivumäärä: 252 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2010, 28.10.2010 (lisätietoa)
Kieli: Englanti
Tuotesarja: The Springer Series on Demographic Methods and Population Analysis 23

The central aim of many studies in population research and demography is to explain cause-effect relationships among variables or events. For decades, population scientists have concentrated their efforts on estimating the ‘causes of effects’ by applying standard cross-sectional and dynamic regression techniques, with regression coefficients routinely being understood as estimates of causal effects. The standard approach to infer the ‘effects of causes’ in natural sciences and in psychology is to conduct randomized experiments. In population studies, experimental designs are generally infeasible.


In population studies, most research is based on non-experimental designs (observational or survey designs) and rarely on quasi experiments or natural experiments. Using non-experimental designs to infer causal relationships—i.e. relationships that can ultimately inform policies or interventions—is a complex undertaking. Specifically, treatment effects can be inferred from non-experimental data with a counterfactual approach. In this counterfactual perspective, causal effects are defined as the difference between the potential outcome irrespective of whether or not an individual had received a certain treatment (or experienced a certain cause). The counterfactual approach to estimate effects of causes from quasi-experimental data or from observational studies was first proposed by Rubin in 1974 and further developed by James Heckman and others.


This book presents both theoretical contributions and empirical applications of the counterfactual approach to causal inference.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Causal Analysis in Population Studies : Concepts, Methods, Applications
Näytä kaikki tuotetiedot
ISBN:
9789048182329
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste