SULJE VALIKKO

avaa valikko

Alexander M Blokhin | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Justification of the Courant-Friedrichs Conjecture for the Problem About Flow Around a Wedge
Alexander M Blokhin; D L Tkachev; Evgeniya Mishchenko
Nova Science Publishers Inc (2013)
Kovakantinen kirja
164,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Circulatory System & Arterial Hypertension - Experimental Investigation, Mathematical & Computer Simulation
Ludmila N Ivanova; Alexander M Blokhin; Arcady L Markel; Evgenia V Mishchenk
Nova Science Publishers Inc (2013)
Kovakantinen kirja
311,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Justification of the Courant-Friedrichs Conjecture for the Problem About Flow Around a Wedge
164,30 €
Nova Science Publishers Inc
Sivumäärä: 149 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2013, 01.07.2013 (lisätietoa)
Kieli: Englanti
The classical problem about a steady-state supersonic flow of an inviscid non-heat-conductive gas around an infinite plane wedge under the assumption that the angle at the vertex of the wedge is less than some limit value is considered. The gas is supposed to be in the state of thermodynamical equilibrium and admits the existence of a state equation. As is well-known, the problem has two discontinuous solutions, one of which is associated with a strong shock wave (the gas velocity behind the shock wave is less than the sound speed) and the second one corresponds to the weak shock wave (the gas velocity behind the shock wave is, in general, larger than the sound speed) (Courant R, Friedrichs K.O. Supersonic flow and shock waves. N. Y.: Interscience Publ. Inc., 1948). One of the possible explanations of this phenomenon was given by Courant and Friedrichs. They conjectured that the solution corresponding to the strong shock wave is instable in the sense of Lyapunov, whereas the solution corresponding to the weak shock wave is stable. This conjecture has been confirmed in a number of studies in which either particular cases were considered or the proposed argumentation was given at the qualitative (mostly, physical) level of rigor. In this monograph, the Courant-Friedrichs conjecture is strictly mathematically justified at the linear level. The mechanism of generating the instability for the case of a strong shock is explained. The smoothness of the solution essentially depends on the peculiarity of the boundary at the vertex of the wedge. The situation with a weak shock drastically differs from the previous one. It is amazing but for the compactly supported initial data the solution to the linear problem reaches the steady state regime infinite time.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Justification of the Courant-Friedrichs Conjecture for the Problem About Flow Around a Wedgezoom
Näytä kaikki tuotetiedot
ISBN:
9781624173776
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste