SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Adam Schenker | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Graph-theoretic Techniques For Web Content Mining
Adam Schenker; Horst Bunke; Mark Last; Abraham Kandel
World Scientific Publishing Co Pte Ltd (2005)
Kovakantinen kirja
171,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Trapping of Small Organisms Moving Randomly : Principles and Applications to Pest Monitoring and Management
James R. Miller; Christopher G. Adams; Paul A. Weston; Jeffrey H. Schenker
Springer (2015)
Pehmeäkantinen kirja
61,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Graph-theoretic Techniques For Web Content Mining
171,20 €
World Scientific Publishing Co Pte Ltd
Sivumäärä: 248 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2005, 31.05.2005 (lisätietoa)
Kieli: Englanti
This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors. Through the use of graph distance — a relatively new approach for determining graph similarity — the authors show how well-known algorithms, such as k-means clustering and k-nearest neighbors classification, can be easily extended to work with graphs instead of vectors. This allows for the utilization of additional information found in graph representations, while at the same time employing well-known, proven algorithms.To demonstrate and investigate these novel techniques, the authors have selected the domain of web content mining, which involves the clustering and classification of web documents based on their textual substance. Several methods of representing web document content by graphs are introduced; an interesting feature of these representations is that they allow for a polynomial time distance computation, something which is typically an NP-complete problem when using graphs. Experimental results are reported for both clustering and classification in three web document collections using a variety of graph representations, distance measures, and algorithm parameters.In addition, this book describes several other related topics, many of which provide excellent starting points for researchers and students interested in exploring this new area of machine learning further. These topics include creating graph-based multiple classifier ensembles through random node selection and visualization of graph-based data using multidimensional scaling.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Graph-theoretic Techniques For Web Content Miningzoom
Näytä kaikki tuotetiedot
ISBN:
9789812563392
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste