SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Abraham Albert Ungar | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



Analytic Hyperbolic Geometry: Mathematical Foundations And Applications
Abraham Albert Ungar
World Scientific Publishing Co Pte Ltd (2005)
Kovakantinen kirja
184,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Analytic Hyperbolic Geometry And Albert Einstein's Special Theory Of Relativity
Abraham Albert Ungar
World Scientific Publishing Co Pte Ltd (2008)
Kovakantinen kirja
243,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Barycentric Calculus In Euclidean And Hyperbolic Geometry: A Comparative Introduction
Abraham Albert Ungar
World Scientific Publishing Co Pte Ltd (2010)
Kovakantinen kirja
129,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Analytic Hyperbolic Geometry in N Dimensions - An Introduction
Abraham Albert Ungar
Taylor & Francis Inc (2014)
Kovakantinen kirja
225,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Analytic Hyperbolic Geometry And Albert Einstein's Special Theory Of Relativity
Abraham Albert Ungar
World Scientific Publishing Co Pte Ltd (2022)
Kovakantinen kirja
208,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Analytic Hyperbolic Geometry: Mathematical Foundations And Applications
184,70 €
World Scientific Publishing Co Pte Ltd
Sivumäärä: 484 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2005, 07.09.2005 (lisätietoa)
Kieli: Englanti
This is the first book on analytic hyperbolic geometry, fully analogous to analytic Euclidean geometry. Analytic hyperbolic geometry regulates relativistic mechanics just as analytic Euclidean geometry regulates classical mechanics. The book presents a novel gyrovector space approach to analytic hyperbolic geometry, fully analogous to the well-known vector space approach to Euclidean geometry. A gyrovector is a hyperbolic vector. Gyrovectors are equivalence classes of directed gyrosegments that add according to the gyroparallelogram law just as vectors are equivalence classes of directed segments that add according to the parallelogram law. In the resulting “gyrolanguage” of the book one attaches the prefix “gyro” to a classical term to mean the analogous term in hyperbolic geometry. The prefix stems from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Gyrolanguage turns out to be the language one needs to articulate novel analogies that the classical and the modern in this book share.The scope of analytic hyperbolic geometry that the book presents is cross-disciplinary, involving nonassociative algebra, geometry and physics. As such, it is naturally compatible with the special theory of relativity and, particularly, with the nonassociativity of Einstein velocity addition law. Along with analogies with classical results that the book emphasizes, there are remarkable disanalogies as well. Thus, for instance, unlike Euclidean triangles, the sides of a hyperbolic triangle are uniquely determined by its hyperbolic angles. Elegant formulas for calculating the hyperbolic side-lengths of a hyperbolic triangle in terms of its hyperbolic angles are presented in the book.The book begins with the definition of gyrogroups, which is fully analogous to the definition of groups. Gyrogroups, both gyrocommutative and non-gyrocommutative, abound in group theory. Surprisingly, the seemingly structureless Einstein velocity addition of special relativity turns out to be a gyrocommutative gyrogroup operation. Introducing scalar multiplication, some gyrocommutative gyrogroups of gyrovectors become gyrovector spaces. The latter, in turn, form the setting for analytic hyperbolic geometry just as vector spaces form the setting for analytic Euclidean geometry. By hybrid techniques of differential geometry and gyrovector spaces, it is shown that Einstein (Möbius) gyrovector spaces form the setting for Beltrami-Klein (Poincaré) ball models of hyperbolic geometry. Finally, novel applications of Möbius gyrovector spaces in quantum computation, and of Einstein gyrovector spaces in special relativity, are presented.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Analytic Hyperbolic Geometry: Mathematical Foundations And Applicationszoom
Näytä kaikki tuotetiedot
ISBN:
9789812564573
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste