SULJE VALIKKO

avaa valikko

Abdul Hamid Khan | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Statistical Inference - Theory of Estimation
Manoj Kumar Srivastava; Abdul Hamid Khan; Namita Srivastava
PHI Learning (2014)
Pehmeäkantinen kirja
37,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
The Treatment of Pharmaceutical Wastewater - Innovative Technologies and the Adaptation of Treatment Systems
Afzal Husain Khan; Nadeem A Khan; Mu. Naushad; Hamidi Abdul Aziz
Elsevier - Health Sciences Division (2023)
Pehmeäkantinen kirja
162,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
High Performance Computing in Biomimetics - Modeling, Architecture and Applications
Kamarul Arifin Ahmad; Nor Asilah Wati Abdul Hamid; Mohammad Jawaid; Tabrej Khan; Balbir Singh
Springer Verlag, Singapore (2024)
Kovakantinen kirja
155,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Statistical Inference - Theory of Estimation
37,10 €
PHI Learning
Sivumäärä: 808 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2014, 30.08.2014 (lisätietoa)
Kieli: Englanti
Intended for the postgraduate students of statistics, this sequel to Statistical Inference: Testing of Hypotheses introduces the problem of estimation in the light of foundations laid down by Sir R.A. Fisher (1922), and follows both classical and Bayesian approaches to solve these problems.

The book starts by discussing the growing levels of data summarization, and connects this with sufficient and minimal sufficient statistics. The book provides a complete account of theorems and results on uniformly minimum variance unbiased estimators (UMVUE)-including the famous Rao and Blackwell theorem to suggest an improved estimator based on a sufficient statistic, and the Lehmann-Scheffe theorem to give an UMVUE. It discusses the Cramer-Rao and Bhattacharyya variance lower bounds for regular models, by introducing Fishers information and Chapman, Robbins and Kiefer variance lower bounds for Pitman models. The book also introduces different methods of estimation, including the method of maximum likelihood, and discusses large sample properties such as consistency, consistent asymptotic normality (CAN) and best asymptotic normality (BAN) of different estimators.

Separate chapters are devoted to finding the Pitman estimator, among equivariant estimators, for location and scale models, by exploiting symmetry structure, present in the model, and Bayes, Empirical Bayes, Hierarchical Bayes estimators in different statistical models. Systematic exposition of the theory and results in different statistical situations and models are included. Each chapter finishes with solved examples in a number of statistical models, augmented by explanation of theorems and results.

Key features:


Provides clarifications of theorems and related eesults.
Includes numerous solved examples to improve analytical insight on the subject.
Incorporates chapter-end exercises to review student's comprehension of the subject.
Discusses detailed theory on data summarization, unbiased estimation with large sample properties, and Bayes and Minimax estimation, separately, in different chapters.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Statistical Inference - Theory of Estimationzoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste