SULJE VALIKKO

avaa valikko

Aaron Courville | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Deep Learning
Ian Goodfellow; Yoshua Bengio; Aaron Courville
MIT Press Ltd (2016)
Kovakantinen kirja
118,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Deep Learning. Das umfassende Handbuch
Ian Goodfellow; Yoshua Bengio; Aaron Courville
MITP Verlags GmbH (2018)
Pehmeäkantinen kirja
125,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Deep Learning
Ian Goodfellow; Yoshua Bengio; Aaron Courville
Touchladybirdlucky Studios (2023)
Pehmeäkantinen kirja
127,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
MIT Press Ltd
Sivumäärä: 800 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2016, 18.11.2016 (lisätietoa)
Kieli: Englanti
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject."
-Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Deep Learningzoom
Näytä kaikki tuotetiedot
ISBN:
9780262035613
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste