Lars Davidson (ed.); Davor Cokljat (ed.); Jochen Fröhlich (ed.); Michael A. Leschziner (ed.); Chris Mellen (ed.); Wol Rodi Springer (2003) Kovakantinen kirja
Lars Davidson (ed.); Davor Cokljat (ed.); Jochen Fröhlich (ed.); Michael A. Leschziner (ed.); Chris Mellen (ed.); Wol Rodi Springer (2010) Pehmeäkantinen kirja
O. Foerster; A. Fröhlich; G. Hohmann; W. Lehmann; L. Mann; O. Marburg; J. Reinhold; M. Sgalitzer; A. Strasser; Wagner-J Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (1936) Pehmeäkantinen kirja
Jutta Escher; Yoram Alhassid; Lee A. Bernstein; David Brown; Carla Fröhlich; Patrick Talou; Walid Younes Springer Nature Switzerland AG (2021) Kovakantinen kirja
Jutta Escher; Yoram Alhassid; Lee A. Bernstein; David Brown; Carla Fröhlich; Patrick Talou; Walid Younes Springer Nature Switzerland AG (2022) Pehmeäkantinen kirja
This book originates from graduate courses given in Cambridge and London. It provides a brisk, thorough treatment of the foundations of algebraic number theory, and builds on that to introduce more advanced ideas. Throughout, the authors emphasise the systematic development of techniques for the explicit calculation of the basic invariants, such as rings of integers, class groups, and units. Moreover they combine, at each stage of development, theory with explicit computations and applications, and provide motivation in terms of classical number-theoretic problems. A number of special topics are included that can be treated at this level but can usually only be found in research monographs or original papers, for instance: module theory of Dedekind domains; tame and wild ramifications; Gauss series and Gauss periods; binary quadratic forms; and Brauer relations. This is the only textbook at this level which combines clean, modern algebraic techniques together with a substantial arithmetic content. It will be indispensable for all practising and would-be algebraic number theorists.