SULJE VALIKKO

avaa valikko

Theory of Algebraic Functions of One Variable
129,70 €
American Mathematical Society
Sivumäärä: 157 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2012, 01.08.2012 (lisätietoa)
Kieli: Englanti
This book is the first English translation of the classic long paper Theorie der algebraischen Functionen einer Veranderlichen (Theory of algebraic functions of one variable), published by Dedekind and Weber in 1882. The translation has been enriched by a Translator's Introduction that provides historical background, and extensive commentary embedded in the translation itself. The translation, introduction, and commentary provide the first easy access to this important paper for a wide mathematical audience: students, historians of mathematics, and professional mathematicians. Why is the Dedekind-Weber paper important? In the 1850s, Riemann initiated a revolution in algebraic geometry by interpreting algebraic curves as surfaces covering the sphere. He obtained deep and striking results in pure algebra by intuitive arguments about surfaces and their topology. However, Riemann's arguments were not rigorous, and they remained in limbo until 1882, when Dedekind and Weber put them on a sound foundation. The key to this breakthrough was to develop the theory of algebraic functions in analogy with Dedekind's theory of algebraic numbers, where the concept of ideal plays a central role. By introducing such concepts into the theory of algebraic curves, Dedekind and Weber paved the way for modern algebraic geometry.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Theory of Algebraic Functions of One Variable
Näytä kaikki tuotetiedot
ISBN:
9780821883303
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste