SULJE VALIKKO

avaa valikko

Zhu Xiaojin Zhu | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



Introduction to Semi-Supervised Learning
Xiaojin Zhu; Andrew Goldberg
Morgan & Claypool Publishers (2009)
Pehmeäkantinen kirja
57,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Introduction to Semi-Supervised Learning
Xiaojin Zhu; Andrew. B Goldberg
Springer International Publishing AG (2009)
Pehmeäkantinen kirja
33,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Introduction to Semi-Supervised Learning
Zhu Xiaojin Zhu; Goldberg Andrew. B Goldberg
Springer Nature B.V. (2009)
Pehmeäkantinen kirja
115,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Synthesis Series in Computer and Information Science: v. 10
Luiz Barroso; Daniel J. Sorin; Graham Wilcock; Xiaojin Zhu
Morgan & Claypool Publishers (2010)
Kovakantinen kirja
123,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Networked Multisensor Decision and Estimation Fusion - Based on Advanced Mathematical Methods
Yunmin Zhu; Jie Zhou; Xiaojing Shen; Enbin Song; Yingting Luo
Taylor & Francis Inc (2012)
Kovakantinen kirja
128,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Introduction to Semi-Supervised Learning
57,80 €
Morgan & Claypool Publishers
Sivumäärä: 130 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2009, 30.06.2009 (lisätietoa)
Kieli: Englanti
Tuotesarja: Synthesis Lectures on Artifici
Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Introduction to Semi-Supervised Learningzoom
Näytä kaikki tuotetiedot
ISBN:
9781598295474
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste