SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Yixiang Wang | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Cohesive Subgraph Search Over Large Heterogeneous Information Networks
Yixiang Fang; Kai Wang; Xuemin Lin; Wenjie Zhang
Springer (2022)
Pehmeäkantinen kirja
44,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Forest Management for Climate Change Mitigation - Recent Innovations and Research Needs
Yixiang Wang; Manuel Esteban Lucas Borja; Zhibin Sun; Paulo Pereira
Springer International Publishing AG (2024)
Kovakantinen kirja
147,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Cohesive Subgraph Search Over Large Heterogeneous Information Networks
44,80 €
Springer
Sivumäärä: 74 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2022, 07.05.2022 (lisätietoa)
Kieli: Englanti
Tuotesarja: SpringerBriefs in Computer Science

This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and comparison studies in recent years. This SpringerBrief offers a list of promising future research directions of performing CSS over large HINs.

The authors first classify the existing works of CSS over HINs according to the classic cohesiveness metrics such as core, truss, clique, connectivity, density, etc., and then extensively review the specific models and their corresponding search solutions in each group. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. The authors also analyze and compare these cohesive subgraph models (CSMs) and solutions systematically. Specifically, the authors compare different groups of CSMs and analyze both their similarities and differences, from multiple perspectives such as cohesiveness constraints, shared properties, and computational efficiency. Then, for the CSMs in each group, the authors further analyze and compare their model properties and high-level algorithm ideas.

This SpringerBrief targets researchers, professors, engineers and graduate students, who are working in the areas of graph data management and graph mining. Undergraduate students who are majoring in computer science, databases, data and knowledge engineering, and data science will also want to read this SpringerBrief.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Cohesive Subgraph Search Over Large Heterogeneous Information Networkszoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste