SULJE VALIKKO

avaa valikko

Yang Xinghao Yang | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Adversarial Machine Learning - Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence
Aneesh Sreevallabh Chivukula; Xinghao Yang; Bo Liu; Wei Liu; Wanlei Zhou
Springer Nature Switzerland AG (2023)
Kovakantinen kirja
147,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Adversarial Machine Learning
Sreevallabh Chivukula Aneesh Sreevallabh Chivukula; Yang Xinghao Yang; Liu Bo Liu
Springer Nature B.V. (2023)
Pehmeäkantinen kirja
106,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Adversarial Machine Learning - Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence
Aneesh Sreevallabh Chivukula; Xinghao Yang; Bo Liu; Wei Liu; Wanlei Zhou
Springer Nature Switzerland AG (2024)
Pehmeäkantinen kirja
147,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Adversarial Machine Learning - Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence
147,10 €
Springer Nature Switzerland AG
Sivumäärä: 302 sivua
Asu: Kovakantinen kirja
Painos: 2023
Julkaisuvuosi: 2023, 07.03.2023 (lisätietoa)
Kieli: Englanti
A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways.  In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed.



We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantificationof the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications.



In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Adversarial Machine Learning - Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligencezoom
Näytä kaikki tuotetiedot
ISBN:
9783030997717
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste