SULJE VALIKKO

avaa valikko

Warren Rosenfeld | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Reinforcement Learning for Optimal Feedback Control - A Lyapunov-Based Approach
Rushikesh Kamalapurkar; Patrick Walters; Joel Rosenfeld; Warren Dixon
Springer International Publishing AG (2018)
Kovakantinen kirja
143,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Common Problems in the Newborn Nursery - An Evidence and Case-based Guide
Gilbert I. Martin; Warren Rosenfeld
Springer International Publishing AG (2018)
Pehmeäkantinen kirja
101,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Reinforcement Learning for Optimal Feedback Control - A Lyapunov-Based Approach
Rushikesh Kamalapurkar; Patrick Walters; Joel Rosenfeld; Warren Dixon
Springer Nature Switzerland AG (2018)
Pehmeäkantinen kirja
143,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Reinforcement Learning for Optimal Feedback Control - A Lyapunov-Based Approach
143,50 €
Springer International Publishing AG
Sivumäärä: 293 sivua
Asu: Kovakantinen kirja
Painos: 1st ed. 2018
Julkaisuvuosi: 2018, 28.05.2018 (lisätietoa)
Kieli: Englanti
Tuotesarja: Communications and Control Engineering
Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book’s focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution. To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor–critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements.




This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Reinforcement Learning for Optimal Feedback Control - A Lyapunov-Based Approachzoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste