Alexander S. C. Rower; Susan Braeuer Dam; Alfred Pacquement; Raphaël Bouvier; Robert Rubin; Hans-Ulrich Obrist; Joa Simon Cahiers d'art (2015) Pehmeäkantinen kirja
All papers appearing in this volume are original research articles and have not been published elsewhere. They meet the requirements that are necessary for publication in a good quality primary journal. E.Belchev, S.Hineva: On the minimal hypersurfaces of a locally symmetric manifold. -N.Blasic, N.Bokan, P.Gilkey: The spectral geometry of the Laplacian and the conformal Laplacian for manifolds with boundary. -J.Bolton, W.M.Oxbury, L.Vrancken, L.M. Woodward: Minimal immersions of RP2 into CPn. -W.Cieslak, A. Miernowski, W.Mozgawa: Isoptics of a strictly convex curve. -F.Dillen, L.Vrancken: Generalized Cayley surfaces. -A.Ferrandez, O.J.Garay, P.Lucas: On a certain class of conformally flat Euclidean hypersurfaces. -P.Gauduchon: Self-dual manifolds with non-negative Ricci operator. -B.Hajduk: On the obstruction group toexistence of Riemannian metrics of positive scalar curvature. -U.Hammenstaedt: Compact manifolds with 1/4-pinched negative curvature. -J.Jost, Xiaowei Peng: The geometry of moduli spaces of stable vector bundles over Riemannian surfaces. - O.Kowalski, F.Tricerri: A canonical connection for locally homogeneous Riemannian manifolds. -M.Kozlowski: Some improper affine spheres in A3. -R.Kusner: A maximum principle at infinity and the topology of complete embedded surfaces with constant mean curvature. -Anmin Li: Affine completeness and Euclidean completeness. -U.Lumiste: On submanifolds with parallel higher order fundamental form in Euclidean spaces. -A.Martinez, F.Milan: Convex affine surfaces with constant affine mean curvature. -M.Min-Oo, E.A.Ruh, P.Tondeur: Transversal curvature and tautness for Riemannian foliations. -S.Montiel, A.Ros: Schroedinger operators associated to a holomorphic map. -D.Motreanu: Generic existence of Morse functions on infinite dimensional Riemannian manifolds and applications. -B.Opozda: Some extensions of Radon's theorem.