SULJE VALIKKO

avaa valikko

Uchaikin Vladimir V. Uchaikin | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 7 tuotetta
Haluatko tarkentaa hakukriteerejä?



Fractional Kinetics In Solids: Anomalous Charge Transport In Semiconductors, Dielectrics And Nanosystems
Vladimir V Uchaikin; Renat T Sibatov
World Scientific Publishing Co Pte Ltd (2013)
Kovakantinen kirja
110,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Fractional Derivatives for Physicists and Engineers : Volume I Background and Theory
Vladimir V. Uchaikin
Springer (2013)
Kovakantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Fractional Kinetics In Space: Anomalous Transport Models
Vladimir V Uchaikin; Renat T Sibatov
World Scientific Publishing Co Pte Ltd (2018)
Kovakantinen kirja
128,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Chance and Stability - Stable Distributions and their Applications
Vladimir V. Uchaikin; Vladimir M. Zolotarev
Brill (1999)
Kovakantinen kirja
615,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Fractional Derivatives for Physicists and Engineers
Uchaikin Vladimir V. Uchaikin
Springer Nature B.V. (2015)
Pehmeäkantinen kirja
116,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Electron-Photon Cascades - A Probabilistic Point of View
Vladimir V. Uchaikin
Springer Verlag, Singapore (2024)
Kovakantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Fractional Derivatives for Physicists and Engineers : Volume II Applications
Vladimir V. Uchaikin
Springer (2025)
Kovakantinen kirja
147,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Fractional Kinetics In Solids: Anomalous Charge Transport In Semiconductors, Dielectrics And Nanosystems
110,40 €
World Scientific Publishing Co Pte Ltd
Sivumäärä: 276 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2013, 16.01.2013 (lisätietoa)
Kieli: Englanti
The standard (Markovian) transport model based on the Boltzmann equation cannot describe some non-equilibrium processes called anomalous that take place in many disordered solids. Causes of anomality lie in non-uniformly scaled (fractal) spatial heterogeneities, in which particle trajectories take cluster form. Furthermore, particles can be located in some domains of small sizes (traps) for a long time. Estimations show that path length and waiting time distributions are often characterized by heavy tails of the power law type. This behavior allows the introduction of time and space derivatives of fractional orders. Distinction of path length distribution from exponential is interpreted as a consequence of media fractality, and analogous property of waiting time distribution as a presence of memory.In this book, a novel approach using equations with derivatives of fractional orders is applied to describe anomalous transport and relaxation in disordered semiconductors, dielectrics and quantum dot systems. A relationship between the self-similarity of transport, the Levy stable limiting distributions and the kinetic equations with fractional derivatives is established. It is shown that unlike the well-known Scher-Montroll and Arkhipov-Rudenko models, which are in a sense alternatives to the normal transport model, fractional differential equations provide a unified mathematical framework for describing normal and dispersive transport. The fractional differential formalism allows the equations of bipolar transport to be written down and transport in distributed dispersion systems to be described. The relationship between fractional transport equations and the generalized limit theorem reveals the probabilistic aspects of the phenomenon in which a dispersive to Gaussian transport transition occurs in a time-of-flight experiment as the applied voltage is decreased and/or the sample thickness increased. Recent experiments devoted to studies of transport in quantum dot arrays are discussed in the framework of dispersive transport models. The memory phenomena in systems under consideration are discussed in the analysis of fractional equations.It is shown that the approach based on the anomalous transport models and the fractional kinetic equations may be very useful in some problems that involve nano-sized systems. These are photon counting statistics of blinking single quantum dot fluorescence, relaxation of current in colloidal quantum dot arrays, and some others.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Fractional Kinetics In Solids: Anomalous Charge Transport In Semiconductors, Dielectrics And Nanosystemszoom
Näytä kaikki tuotetiedot
ISBN:
9789814355421
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste