Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel Spektrum Akademischer Verlag (2012) Pehmeäkantinen kirja
Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel Spektrum Akademischer Verlag (2008) Pehmeäkantinen kirja
Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel Spektrum Akademischer Verlag (2009) Pehmeäkantinen kirja
Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel Spektrum Akademischer Verlag (2011) Kovakantinen kirja
Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel Springer Spektrum (2013) Pehmeäkantinen kirja
Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2015) Kovakantinen kirja
Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2015) Pehmeäkantinen kirja
Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel Springer Spektrum (2017) Pehmeäkantinen kirja
Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel Springer Fachmedien Wiesbaden (2018) Kovakantinen kirja
Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel Springer Fachmedien Wiesbaden (2018) Pehmeäkantinen kirja
This text presents the theory of quadrics in a modern form. It builds on the previously published book "The Universe of Conics", including many novel results that are not easily accessible elsewhere. As in the conics book, the approach combines synthetic and analytic methods to derive projective, affine, and metrical properties, covering both Euclidean and non-Euclidean geometries.
While the history of conics is more than two thousand years old, the theory of quadrics began to develop approximately three hundred years ago. Quadrics play a fundamental role in numerous fields of mathematics and physics, their applications ranging from mechanical engineering, architecture, astronomy, and design to computer graphics.
This text will be invaluable to undergraduate and graduate mathematics students, those in adjacent fields of study, and anyone with a deeper interest in geometry. Complemented with about three hundred fifty figures and photographs,this innovative text will enhance your understanding of projective geometry, linear algebra, mechanics, and differential geometry, with careful exposition and many illustrative exercises.