SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Salis Fabio Salis | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Artificial Intelligence and Credit Risk - The Use of Alternative Data and Methods in Internal Credit Rating
Rossella Locatelli; Giovanni Pepe; Fabio Salis
Springer International Publishing AG (2022)
Kovakantinen kirja
44,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Artificial Intelligence and Credit Risk
Locatelli Rossella Locatelli; Pepe Giovanni Pepe; Salis Fabio Salis
Springer Nature B.V. (2022)
Pehmeäkantinen kirja
115,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Artificial Intelligence and Credit Risk - The Use of Alternative Data and Methods in Internal Credit Rating
44,80 €
Springer International Publishing AG
Sivumäärä: 104 sivua
Asu: Kovakantinen kirja
Painos: 1st ed. 2022
Julkaisuvuosi: 2022, 14.09.2022 (lisätietoa)
Kieli: Englanti
This book focuses on the alternative techniques and data leveraged for credit risk, describing and analysing the array of methodological approaches for the usage of techniques and/or alternative data for regulatory and managerial rating models. During the last decade the increase in computational capacity, the consolidation of new methodologies to elaborate data and the availability of new information related to individuals and organizations, aided by the widespread usage of internet, set the stage for the development and application of artificial intelligence techniques in enterprises in general and financial institutions in particular. In the banking world, its application is even more relevant, thanks to the use of larger and larger data sets for credit risk modelling. The evaluation of credit risk has largely been based on client data modelling; such techniques (linear regression, logistic regression, decision trees, etc.) and data sets (financial, behavioural, sociologic, geographic, sectoral, etc.) are referred to as “traditional” and have been the de facto standards in the banking industry. The incoming challenge for credit risk managers is now to find ways to leverage the new AI toolbox on new (unconventional) data to enhance the models’ predictive power, without neglecting problems due to results’ interpretability while recognizing ethical dilemmas. Contributors are university researchers, risk managers operating in banks and other financial intermediaries and consultants. The topic is a major one for the financial industry, and this is one of the first works offering relevant case studies alongside practical problems and solutions.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Artificial Intelligence and Credit Risk - The Use of Alternative Data and Methods in Internal Credit Rating
Näytä kaikki tuotetiedot
ISBN:
9783031102356
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste