SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

SWAPNEEL MAHAJAN | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 6 tuotetta
Haluatko tarkentaa hakukriteerejä?



Monoidal Functors, Species and Hopf Algebras
Marcelo Aguiar; Swapneel Mahajan
MP-AMM American Mathematical (2010)
Kovakantinen kirja
169,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Coxeter Groups and Hopf Algebras
Marcelo Aguiar; Swapneel Mahajan
MP-AMM American Mathematical (2012)
Pehmeäkantinen kirja
77,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Topics in Hyperplane Arrangements
Marcelo Aguiar; Swapneel Mahajan
MP-AMM American Mathematical (2017)
Kovakantinen kirja
164,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Bimonoids for Hyperplane Arrangements
Marcelo Aguiar; Swapneel Mahajan
Cambridge University Press (2020)
Kovakantinen kirja
194,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Coxeter Bialgebras
Marcelo Aguiar; Swapneel Mahajan
Cambridge University Press (2022)
Kovakantinen kirja
153,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
COXETER GROUPS AND HOPF ALGEBRAS
SWAPNEEL MAHAJAN
AMERICAN MATHEMATICAL SOCIETY (2006)
102,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Monoidal Functors, Species and Hopf Algebras
169,90 €
MP-AMM American Mathematical
Sivumäärä: 784 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2010, 30.11.2010 (lisätietoa)
Kieli: Englanti
This research monograph integrates ideas from category theory, algebra and combinatorics. It is organised in three parts. Part I belongs to the realm of category theory. It reviews some of the foundational work of Bénabou, Eilenberg, Kelly and Mac Lane on monoidal categories and of Joyal and Street on braided monoidal categories, and proceeds to study higher monoidal categories and higher monoidal functors. Special attention is devoted to the notion of a bilax monoidal functor which plays a central role in this work. Combinatorics and geometry are the theme of Part II. Joyal's species constitute a good framework for the study of algebraic structures associated to combinatorial objects. This part discusses the category of species focusing particularly on the Hopf monoids therein. The notion of a Hopf monoid in species parallels that of a Hopf algebra and reflects the manner in which combinatorial structures compose and decompose. Numerous examples of Hopf monoids are given in the text. These are constructed from combinatorial and geometric data and inspired by ideas of Rota and Tits' theory of Coxeter complexes. Part III is of an algebraic nature and shows how ideas in Parts I and II lead to a unified approach to Hopf algebras. The main step is the construction of Fock functors from species to graded vector spaces. These functors are bilax monoidal and thus translate Hopf monoids in species to graded Hopf algebras. This functorial construction of Hopf algebras encompasses both quantum groups and the Hopf algebras of recent prominence in the combinatorics literature. The monograph opens a vast new area of research. It is written with clarity and sufficient detail to make it accessible to advanced graduate students. Titles in this series are co-published with the Centre de Recherches Mathématiques.|This research monograph integrates ideas from category theory, algebra and combinatorics. It is organised in three parts. Part I belongs to the realm of category theory. It reviews some of the foundational work of Bénabou, Eilenberg, Kelly and Mac Lane on monoidal categories and of Joyal and Street on braided monoidal categories, and proceeds to study higher monoidal categories and higher monoidal functors. Special attention is devoted to the notion of a bilax monoidal functor which plays a central role in this work. Combinatorics and geometry are the theme of Part II. Joyal's species constitute a good framework for the study of algebraic structures associated to combinatorial objects. This part discusses the category of species focusing particularly on the Hopf monoids therein. The notion of a Hopf monoid in species parallels that of a Hopf algebra and reflects the manner in which combinatorial structures compose and decompose. Numerous examples of Hopf monoids are given in the text. These are constructed from combinatorial and geometric data and inspired by ideas of Rota and Tits' theory of Coxeter complexes. Part III is of an algebraic nature and shows how ideas in Parts I and II lead to a unified approach to Hopf algebras. The main step is the construction of Fock functors from species to graded vector spaces. These functors are bilax monoidal and thus translate Hopf monoids in species to graded Hopf algebras. This functorial construction of Hopf algebras encompasses both quantum groups and the Hopf algebras of recent prominence in the combinatorics literature. The monograph opens a vast new area of research. It is written with clarity and sufficient detail to make it accessible to advanced graduate students. Titles in this series are co-published with the Centre de Recherches Mathématiques.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Monoidal Functors, Species and Hopf Algebras
Näytä kaikki tuotetiedot
ISBN:
9780821847763
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste