SULJE VALIKKO
KIRJAUDU
Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ
| Hitting Probabilities for Nonlinear Systems of Stochastic Waves 80,50 € MP-AMM American Mathematical Sivumäärä: 76 sivua Asu: Pehmeäkantinen kirja Julkaisuvuosi: 2015, 30.09.2015 (lisätietoa) Kieli: Englanti The authors consider a $d$-dimensional random field $u = {u(t,x)}$ that solves a non-linear system of stochastic wave equations in spatial dimensions $k in {1,2,3}$, driven by a spatially homogeneous Gaussian noise that is white in time. They mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent $beta$. Using Malliavin calculus, they establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of $mathbb{R}^d$, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that appears in the Hausdorff measure is close to optimal, and shows that when $d(2-beta) > 2(k+1)$, points are polar for $u$. Conversely, in low dimensions $d$, points are not polar. There is, however, an interval in which the question of polarity of points remains open. Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Näytä kaikki tuotetiedotISBN: 9781470414238 Aihealue: |
Sisäänkirjautuminen
Kirjaudu sisäänRekisteröityminen |
Oma tili
Omat tiedotOmat tilaukset Omat laskut |
Lisätietoja
AsiakaspalveluTietoa verkkokaupasta Toimitusehdot Tietosuojaseloste |