SULJE VALIKKO

avaa valikko

Ramamurthy Karthikeyan Natesan Ramamurthy | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Image Understanding Using Sparse Representations
Jayaraman J. Thiagarajan; Karthikeyan Natesan Ramamurthy; Pavan Turaga; Andreas Spanias
Morgan & Claypool Publishers (2014)
Pehmeäkantinen kirja
57,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Image Understanding using Sparse Representations
Jayaraman J. Thiagarajan; Karthikeyan Natesan Ramamurthy; Pavan Turaga; Andreas Spanias
Springer International Publishing AG (2014)
Pehmeäkantinen kirja
33,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Image Understanding using Sparse Representations
Thiagarajan Jayaraman J. Thiagarajan; Ramamurthy Karthikeyan Natesan Ramamurthy; Turaga Pavan Turaga
Springer Nature B.V. (2014)
Pehmeäkantinen kirja
115,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Image Understanding Using Sparse Representations
57,80 €
Morgan & Claypool Publishers
Sivumäärä: 118 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2014, 01.04.2014 (lisätietoa)
Kieli: Englanti
Tuotesarja: Synthesis Lectures on Image, V
Image understanding has been playing an increasingly crucial role in several inverse problems and computer vision. Sparse models form an important component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the sparsity of natural signals has led to advances in several application areas including image compression, denoising, inpainting, compressed sensing, blind source separation, super-resolution, and classification.

The primary goal of this book is to present the theory and algorithmic considerations in using sparse models for image understanding and computer vision applications. To this end, algorithms for obtaining sparse representations and their performance guarantees are discussed in the initial chapters. Furthermore, approaches for designing overcomplete, data-adapted dictionaries to model natural images are described. The development of theory behind dictionary learning involves exploring its connection to unsupervised clustering and analyzing its generalization characteristics using principles from statistical learning theory. An exciting application area that has benefited extensively from the theory of sparse representations is compressed sensing of image and video data. Theory and algorithms pertinent to measurement design, recovery, and model-based compressed sensing are presented. The paradigm of sparse models, when suitably integrated with powerful machine learning frameworks, can lead to advances in computer vision applications such as object recognition, clustering, segmentation, and activity recognition. Frameworks that enhance the performance of sparse models in such applications by imposing constraints based on the prior discriminatory information and the underlying geometrical structure, and kernelizing the sparse coding and dictionary learning methods are presented. In addition to presenting theoretical fundamentals in sparse learning, this book provides a platform for interested readers to explore the vastly growing application domains of sparse representations.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Image Understanding Using Sparse Representationszoom
Näytä kaikki tuotetiedot
ISBN:
9781627053594
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste