SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Quan Hua | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 7 tuotetta
Haluatko tarkentaa hakukriteerejä?



Machine Learning with TensorFlow 1.x
Quan Hua; Shams Ul Azeem; Saif Ahmed
Packt Publishing Limited (2017)
Pehmeäkantinen kirja
54,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Ecosystem Assessment and Fuzzy Systems Management
Bing-Yuan Cao; Sheng-Quan Ma; Hu-hua Cao
Springer International Publishing AG (2014)
Pehmeäkantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
OpenCV 3 Blueprints
Joseph Howse; Steven Puttemans; Quan Hua; Utkarsh Sinha
Packt Publishing Limited (2015)
Pehmeäkantinen kirja
61,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Rendezvous in Distributed Systems : Theory, Algorithms and Applications
Zhaoquan Gu; Yuexuan Wang; Qiang-Sheng Hua; Francis C.M. Lau
Springer (2017)
Kovakantinen kirja
121,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Rendezvous in Distributed Systems - Theory, Algorithms and Applications
Zhaoquan Gu; Yuexuan Wang; Qiang-Sheng Hua; Francis C.M. Lau
Springer Verlag, Singapore (2018)
Pehmeäkantinen kirja
97,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Advances in Smart Vehicular Technology, Transportation, Communication and Applications : Proceedings of VTCA 2021
Tsu-Yang Wu (ed.); Shaoquan Ni (ed.); Shu-Chuan Chu (ed.); Chi-Hua Chen (ed.); Margarita Favorskaya (ed.)
Springer (2021)
Kovakantinen kirja
190,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Advances in Smart Vehicular Technology, Transportation, Communication and Applications : Proceedings of VTCA 2021
Tsu-Yang Wu (ed.); Shaoquan Ni (ed.); Shu-Chuan Chu (ed.); Chi-Hua Chen (ed.); Margarita Favorskaya (ed.)
Springer (2022)
Pehmeäkantinen kirja
190,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning with TensorFlow 1.x
54,70 €
Packt Publishing Limited
Sivumäärä: 304 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2017, 21.11.2017 (lisätietoa)
Kieli: Englanti
Tackle common commercial machine learning problems with Google's TensorFlow 1.x library and build deployable solutions.

About This Book

• Enter the new era of second-generation machine learning with Python with this practical and insightful guide
• Set up TensorFlow 1.x for actual industrial use, including high-performance setup aspects such as multi-GPU support
• Create pipelines for training and using applying classifiers using raw real-world data

Who This Book Is For

This book is for data scientists and researchers who are looking to either migrate from an existing machine learning library or jump into a machine learning platform headfirst. The book is also for software developers who wish to learn deep learning by example. Particular focus is placed on solving commercial deep learning problems from several industries using TensorFlow's unique features. No commercial domain knowledge is required, but familiarity with Python and matrix math is expected.

What You Will Learn

• Explore how to use different machine learning models to ask different questions of your data
• Learn how to build deep neural networks using TensorFlow 1.x
• Cover key tasks such as clustering, sentiment analysis, and regression analysis using TensorFlow 1.x
• Find out how to write clean and elegant Python code that will optimize the strength of your algorithms
• Discover how to embed your machine learning model in a web application for increased accessibility
• Learn how to use multiple GPUs for faster training using AWS

In Detail

Google's TensorFlow is a game changer in the world of machine learning. It has made machine learning faster, simpler, and more accessible than ever before. This book will teach you how to easily get started with machine learning using the power of Python and TensorFlow 1.x.
Firstly, you'll cover the basic installation procedure and explore the capabilities of TensorFlow 1.x. This is followed by training and running the first classifier, and coverage of the unique features of the library including data flow graphs, training, and the visualization of performance with TensorBoard—all within an example-rich context using problems from multiple industries. You'll be able to further explore text and image analysis, and be introduced to CNN models and their setup in TensorFlow 1.x. Next, you'll implement a complete real-life production system from training to serving a deep learning model. As you advance you'll learn about Amazon Web Services (AWS) and create a deep neural network to solve a video action recognition problem. Lastly, you'll convert the Caffe model to TensorFlow and be introduced to the high-level TensorFlow library, TensorFlow-Slim.
By the end of this book, you will be geared up to take on any challenges of implementing TensorFlow 1.x in your machine learning environment.

Style and approach

This comprehensive guide will enable you to understand the latest advances in machine learning and will empower you to implement this knowledge in your machine learning environment.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Machine Learning with TensorFlow 1.xzoom
Näytä kaikki tuotetiedot
ISBN:
9781786462961
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste