SULJE VALIKKO

avaa valikko

Paul Muhly | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Categories of Operator Modules (Morita Equivalence and Projective Modules)
David P. Blecher; Paul S. Muhly; V.I. Paulsen
American Mathematical Society (1999)
Pehmeäkantinen kirja
57,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Advances in Quantum Dynamics
Palle Jorgensen; Paul Muhly
American Mathematical Society (2003)
Pehmeäkantinen kirja
120,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Categories of Operator Modules (Morita Equivalence and Projective Modules)
57,10 €
American Mathematical Society
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 1999, 30.12.1999 (lisätietoa)
Kieli: Englanti
We employ recent advances in the theory of operator spaces, also known as quantized functional analysis, to provide a context in which one can compare categories of modules over operator algebras that are not necessarily self-adjoint. We focus our attention on the category of Hilbert modules over an operator algebra and on the category of operator modules over an operator algebra. The module operations are assumed to be completely bounded - usually, completely contractive. We develop the notion of a Morita context between two operator algebras $A$ and $B$. This is a system $(A,B,{}_{A}X_{B},{}_{B} Y_{A},(cdot,cdot),[cdot,cdot])$ consisting of the algebras, two bimodules $_{A}X_{B$ and $_{B}Y_{A}$ and pairings $(cdot,cdot)$ and $[cdot,cdot]$ that induce (complete) isomorphisms between the (balanced) Haagerup tensor products, $X otimes_{hB} {} Y$ and $Y otimes_{hA} {} X$, and the algebras, $A$ and $B$, respectively.Thus, formally, a Morita context is the same as that which appears in pure ring theory. The subtleties of the theory lie in the interplay between the pure algebra and the operator space geometry. Our analysis leads to viable notions of projective operator modules and dual operator modules. We show that two C$^*$-algebras are Morita equivalent in our sense if and only if they are $C^{ast}$-algebraically strong Morita equivalent, and moreover the equivalence bimodules are the same. The distinctive features of the non-self-adjoint theory are illuminated through a number of examples drawn from complex analysis and the theory of incidence algebras over topological partial orders. Finally, an appendix provides links to the literature that developed since this Memoir was accepted for publication.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Categories of Operator Modules (Morita Equivalence and Projective Modules)
Näytä kaikki tuotetiedot
ISBN:
9780821819166
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste