Hermann Henne; Martin Liepach; Wolfgang Münchenhagen; Herbert Preissler; Markus Reinbold; Michael Rudolf Stark Verlagsges.Mbh (2015) Pehmeäkantinen kirja
Karin Jockel; Ralf Wettlaufer; Annika Wiegard; Günter Hellmers; Markus Fox; Stephan Hennig; Reinhold Duczek; Volk Creytz Westermann Schulbuch (2019) Pehmeäkantinen kirja
Markus Hennig; Manuel Lautenbacher; Melek Zorlu; Laura Rosengarten; Johanna Bröse; Vaness Ossino; Kiana Ghaffarizad; Cora Vsa Verlag (2023) Pehmeäkantinen kirja
Fritz Berner; Joachim Hirschner; Hans Christian Jünger; Markus Koch; Tobias Popp; Klaus-Henner Riebeling Fraunhofer Irb Stuttgart (2010) Pehmeäkantinen kirja
Fritz Berner; Joachim Hirschner; Hans Christian Jünger; Markus Koch; Tobias Popp; Klaus-Henner Riebeling Fraunhofer Irb Stuttgart (2010) Pehmeäkantinen kirja
Ulrich Krings; J Rg Scheffner; Mark F Llemann; Markus B Singer; Eckhart Frischbier; Gebi K Ng; Harry Henningsen; Oli Lux Springer Gabler (2012) Pehmeäkantinen kirja
McGraw Hill Asu: Kovakantinen kirja Julkaisuvuosi: 2010, 16.08.2009 (lisätietoa) Kieli: Englanti
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.
A comprehensive cross section of phase-space optics
This definitive volume highlights an elegant, unified approach to optical rays, waves, and system design using cutting-edge phase-space techniques. Phase-Space Optics: Fundamentals and Applications details theoretical concepts of phase space as well as novel engineering applications in specific disciplines. This authoritative guide includes full coverage of sampling, superresolution imaging, and the phase-space interpretation of ultrafast optics. Work with Wigner optics, analyze phase-space equations, develop wave propagation models, and gain a new understanding of optical sources and systems. Discover how to:
Describe optical phenomena using Wigner and ambiguity functions
Perform phase-space rotations using ray transformation matrices
Influence the trade-off between pupil size and depth of field
Analyze and design optical signals using the Radon-Wigner transform
Accomplish superresolution by squeezing phase space
Interpret the intimate relationship between radiometry and coherence
Use basic algebra to discover self-imaging, Fresnel diffraction, and the Talbot effect
Develop discrete models, sampling criteria, and interpolation formulae
Work with ultrafast processes and complex space-time structures