SULJE VALIKKO

avaa valikko

Leno da Silva Felipe Leno da Silva | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Transfer Learning for Multiagent Reinforcement Learning Systems
Felipe Leno Da Silva; Anna Helena Reali Costa
MORGAN&CLAYPOOL (1921)
Pehmeäkantinen kirja
71,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Transfer Learning for Multiagent Reinforcement Learning Systems
Felipe Leno Da Silva; Anna Helena Reali Costa
MORGAN&CLAYPOOL (1921)
Kovakantinen kirja
98,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Transfer Learning for Multiagent Reinforcement Learning Systems
Felipe Leno da Silva; Anna Helena Reali Costa
Springer International Publishing AG (2021)
Pehmeäkantinen kirja
59,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Transfer Learning for Multiagent Reinforcement Learning Systems
Leno da Silva Felipe Leno da Silva; Costa Anna Helena Reali Costa
Springer Nature B.V. (2021)
Pehmeäkantinen kirja
115,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Transfer Learning for Multiagent Reinforcement Learning Systems
71,30 €
MORGAN&CLAYPOOL
Sivumäärä: 129 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 1921, 27.05.2021 (lisätietoa)
Kieli: Englanti
Tuotesarja: Synthesis Lectures on Artifici
Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment.

However, previous knowledge can be leveraged to accelerate learning and enable solving harder tasks. In the same way humans build skills and reuse them by relating different tasks, RL agents might reuse knowledge from previously solved tasks and from the exchange of knowledge with other agents in the environment. In fact, virtually all of the most challenging tasks currently solved by RL rely on embedded knowledge reuse techniques, such as Imitation Learning, Learning from Demonstration, and Curriculum Learning.

This book surveys the literature on knowledge reuse in multiagent RL. The authors define a unifying taxonomy of state-of-the-art solutions for reusing knowledge, providing a comprehensive discussion of recent progress in the area. In this book, readers will find a comprehensive discussion of the many ways in which knowledge can be reused in multiagent sequential decision-making tasks, as well as in which scenarios each of the approaches is more efficient. The authors also provide their view of the current low-hanging fruit developments of the area, as well as the still-open big questions that could result in breakthrough developments. Finally, the book provides resources to researchers who intend to join this area or leverage those techniques, including a list of conferences, journals, and implementation tools.

This book will be useful for a wide audience; and will hopefully promote new dialogues across communities and novel developments in the area.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Transfer Learning for Multiagent Reinforcement Learning Systemszoom
Näytä kaikki tuotetiedot
ISBN:
9781636391342
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste