SULJE VALIKKO

avaa valikko

Kulkarni Akshay R Kulkarni | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Time Series Algorithms Recipes : Implement Machine Learning and Deep Learning Techniques with Python
Akshay R Kulkarni; Adarsha Shivananda; Anoosh Kulkarni; V Adithya Krishnan
Apress (2022)
Pehmeäkantinen kirja
29,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Time Series Algorithms Recipes
Kulkarni Akshay R Kulkarni; Shivananda Adarsha Shivananda; Kulkarni Anoosh Kulkarni
Springer Nature B.V. (2022)
Pehmeäkantinen kirja
98,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Time Series Algorithms Recipes : Implement Machine Learning and Deep Learning Techniques with Python
29,90 €
Apress
Sivumäärä: 174 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2022, 24.12.2022 (lisätietoa)
Kieli: Englanti
This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. 

It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations.
 
After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python.
 
What You Will Learn
  • Implement various techniques in time series analysis using Python.
  • Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting 
  • Understand univariate and multivariate modeling for time series forecasting
  • Forecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)
 
Who This Book Is For
Data Scientists, Machine Learning Engineers, and software developers interested in time series analysis.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Time Series Algorithms Recipes : Implement Machine Learning and Deep Learning Techniques with Pythonzoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste