Anne Grießer; Myk Jung; Ivonne Keller; Harry Michael Liedtke; Christian Linker; Klaus Märkert; Helga Murauer; Ric Oertel Lauinger Verlag (2016) Pehmeäkantinen kirja
Dov Keren-yaar; Hans Klein; Kalev Kukk; Nikolaus Graf Lambsdorff; Günter Lühmann; Wolfgang Ockenfels; Klaus Oertel; Reich Olzog (2021) Kovakantinen kirja
The German Aerospace Research Establishment (DFVLR) has initiated a new series of seminars concerning fundamental problems in applied engineering sciences. These seminars will be devoted to interdisciplinary topics related to the vast variety of DFVLR activities in the fields of fluid mechanics, flight mechanics, guidance and control, materials and struc tures, non-nuclear energetics, communication technology, and remote sensing. The purpose of the series is twofold, namely, to bring modern ideas and techniques to the attention of the DFVLR in order to stimulate internal activi ties, and secondly, to promulgate DFVLR achievements wi thin the international scientific/technical community. To this end, prominent speakers from Germany and other countries will be invited to join in a series of lectures and discussions on certain topics of mutual interest. The first colloquium of this series dealt with the dynamics of nonlinear systems, especially in relation'to its application to fluid mechanics, particularly in transcritical flows. Of special interest are questions concerning the formation of nonlinear three-dimensional structures in classical fluid mechanical stability problems, the physical process of transition to turbulence, and the appearance of chaotic solutions. The scope of lectures reaches from self-organization in physical systems to structural stability of three-dimensional vortex patterns, the treatment of dissipative and conservative systems, the formation of nonlinear structures in the region of laminar-turbulent transition, and numerical simulation of cumulus cloud convection in meteorology. The seminar should provide an insight into the extent to which theoretical findings in Non linear Dynamics apply to the comprehension of fluid-mechanical problems.