Benno Fuchssteiner; Klaus Gottheil; Andreas Kemper; Oliver Kluge; Karsten Morisse; Holger Naundorf; Gudrun Oevel; Schulze Birkhauser Verlag AG (1994) Pehmeäkantinen kirja
Peter Brokemper; Wolfgang Humann; Maren Jahnke-Ouni; Elisabeth Köster; Natascha Nemetschek; Dieter Potente; Klaus Schreck Cornelsen Verlag GmbH (2015) Kovakantinen kirja
Hans Achenbach; Katharina Beckemper; Klaus Bernsmann; Jens Bülte; Gerhard Dannecker; Andreas Ebert-Weidenfeller Müller Jur.Vlg.C.F. (2015) Kovakantinen kirja
Michael Horn; Klaus Hünerfauth; Christoph Jentsch; Joachim Kemper; Anne Kraft; Klaus Kremb; Dunja Maurer; Uwe Reck; Reif Regionalkultur Verlag (2013) Kovakantinen kirja
Katja Bergmann; Klaus Blesenkemper; Barbara Brüning; Bettina Bußmann; Mark Dahlhoff; Martina Denda; Helmut Engels; Gefert Cornelsen Vlg Scriptor (2016) Pehmeäkantinen kirja
Martina Altschäfer; Matthias Beckmann; Phyllis Kiehl; Klaus Mellenthin; Sebastian Rogler; Uwe Schäfer; Caro Suerkemper Mirabilis Verlag (2016) Kovakantinen kirja
Heinrich Dorner; Ina Ebert; Thomas Hoeren; Rainer Kemper; Ingo Saenger; Alexander Scheuch; Klaus Schreiber; Schulte-Nolke Nomos Verlagsgesellschaft (2016) Kovakantinen kirja
Birkhauser Verlag AG Sivumäärä: 199 sivua Asu: Pehmeäkantinen kirja Painos: 1994 Julkaisuvuosi: 1994, 01.03.1994 (lisätietoa) Kieli: Englanti
MuPAD is a computer algebra project of the MathPAD group at the University of Paderborn. MuPAD was designed as a parallel system. The design and implemen tation of MuPAD grew out of the desire to efficiently handle large data generated by algorithms used to investigate the group theoretical structure of nonlinear sys tems. Nevertheless, MuPAD outgrew this original goal and was developed as a general purpose system and should be used as such. MuPAD had two major design goals. As already mentioned, firstly we wanted to prm·ide a tool for fast and efficient handling of large data. This goal was motivated by the special problems which came up in our research on nonlinear systems, where data of several GB are not unusual. As a consequence of this MuPAD is a parallel computer algebra system working on the basis of a shared memor)" machine. Special interfaces, simulating ~hared memory, will be provided for machines with a different architecture. A sequential version of MuPAD is available which, nevertheless, in its high-end language provides parallel constructs for programming. In this sequential version parallEl blocks are executed at random, thus allowing for logical tests of parallel programs on sequential machines. The sequential MuPAD version is the topic of this refErence manual. The second major design goal was to make sure that future versions of MuPAD could be the basis for a system capable of learning during interactive use.