SULJE VALIKKO

avaa valikko

Jaskie Kristen Jaskie | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Positive Unlabeled Learning
Kristen Jaskie; Andreas Spanias
Morgan & Claypool Publishers (1922)
Pehmeäkantinen kirja
84,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Positive Unlabeled Learning
Kristen Jaskie; Andreas Spanias
Morgan & Claypool Publishers (2022)
Kovakantinen kirja
170,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Positive Unlabeled Learning
Kristen Jaskie; Andreas Spanias
Springer (2022)
Pehmeäkantinen kirja
54,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Positive Unlabeled Learning
Jaskie Kristen Jaskie; Spanias Andreas Spanias
Springer Nature B.V. (2022)
Pehmeäkantinen kirja
115,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Positive Unlabeled Learning
84,50 €
Morgan & Claypool Publishers
Sivumäärä: 152 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 1922, 20.04.2022 (lisätietoa)
Kieli: Englanti
Tuotesarja: Synthesis Lectures on Artifici
Machine learning and artificial intelligence (AI) are powerful tools that create predictive models, extract information, and help make complex decisions. They do this by examining an enormous quantity of labeled training data to find patterns too complex for human observation. However, in many real-world applications, well-labeled data can be difficult, expensive, or even impossible to obtain. In some cases, such as when identifying rare objects like new archeological sites or secret enemy military facilities in satellite images, acquiring labels could require months of trained human observers at incredible expense. Other times, as when attempting to predict disease infection during a pandemic such as COVID-19, reliable true labels may be nearly impossible to obtain early on due to lack of testing equipment or other factors. In that scenario, identifying even a small amount of truly negative data may be impossible due to the high false negative rate of available tests. In such problems, it is possible to label a small subset of data as belonging to the class of interest though it is impractical to manually label all data not of interest. We are left with a small set of positive labeled data and a large set of unknown and unlabeled data.

Readers will explore this Positive and Unlabeled learning (PU learning) problem in depth. The book rigorously defines the PU learning problem, discusses several common assumptions that are frequently made about the problem and their implications, and considers how to evaluate solutions for this problem before describing several of the most popular algorithms to solve this problem. It explores several uses for PU learning including applications in biological/medical, business, security, and signal processing. This book also provides high-level summaries of several related learning problems such as one-class classification, anomaly detection, and noisy learning and their relation to PU learning.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Positive Unlabeled Learningzoom
Näytä kaikki tuotetiedot
ISBN:
9781636393087
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste