J. B. Friedlander; A. Perelli; D.R. Heath-Brown; C. Viola; H. Iwaniec; J. Kaczorowski Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2006) Pehmeäkantinen kirja
T.H. Bullock; A. Fessard; R.H. Hartline; A.J. Kalmijn; P. Laurent; R.W. Murray; H. Scheich; E. Schwartz; T. Szabo Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2011) Pehmeäkantinen kirja
H. Behnken; E. Brodhun; Th. Dreisch; J. Eggert; R. Frerichs; J. Hopmann; Chr. Jensen; H. Konen; G. Laski; E. Lax; Ley Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (1928) Pehmeäkantinen kirja
D.N. Thomas; G.E. Fogg; P. Convey; C.H. Fritsen; J.-M. Gili; R. Gradinger; J. Laybourn-Parry; K. Reid; D.W.H. Walton Oxford University Press (2008) Pehmeäkantinen kirja
H.F. Braun; D.W. Capone; R. Flükiger; A.L. Giorgi; D. Gubser; F. Hulliger; J.L. Jorda; H. Khan; G. Kieselmann; Shelton Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (1990) Kovakantinen kirja
A.Van Wijngaarden; B.J. Mailloux; J.E.L. Peck; C. H. A. Koster; C.H. Lindsey; M. Sintzoff; L.G.L.T. Meertens; R.G Fisker Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (1976) Pehmeäkantinen kirja
E. D. Goldberg (ed.); P. J. Crutzen (ed.); R. M. Garrels (ed.); J. H. Hahn (ed.); R. O. Hallberg (ed.); J. E. (ed Lovelock Springer (2013) Pehmeäkantinen kirja
E. Aulhorn; W. Böke; D. Friedburg; W. Leydhecker; O.-E. Lund; H. Neubauer; A. Nover; H. Pau; H.-J. Thiel; R. Witmer; J. Wollensa Springer (1977) Kovakantinen kirja
M Austgen; H -W Beckenkamp; H -J Brandt; U Dold; H Durschmied; E Dundalek; R Felix; P Georgi; H -J Herold; P Hilgard Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (1985) Kovakantinen kirja
David H. Barlow; Todd J. Farchione; Shannon Sauer-Zavala; Heather Murray Latin; Kristen K. Ellard; Jacqueline R. Bullis Oxford University Press Inc (2018) Pehmeäkantinen kirja
The four papers collected in this book discuss advanced results in analytic number theory, including recent achievements of sieve theory leading to asymptotic formulae for the number of primes represented by suitable polynomials; counting integer solutions to Diophantine equations, using results from algebraic geometry and the geometry of numbers; the theory of Siegel's zeros and of exceptional characters of L-functions; and an up-to-date survey of the axiomatic theory of L-functions introduced by Selberg.