SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Hu Lang | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 6 tuotetta
Haluatko tarkentaa hakukriteerejä?



AI Techniques in Ev Motor and Inverter Fault Detection and Diagnosis
Yihua Hu; Xiaotian Zhang; Wangjie Lang
Institution of Engineering&Technology (2023)
Kovakantinen kirja
145,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Out of the Box
Shao Lianshun; Hu Lang
Page One Publishing Private (2006)
Pehmeäkantinen kirja
99,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Out of the Box
Shao Lianshun; Hu Lang
Page One Publishing Private (2008)
Pehmeäkantinen kirja
94,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
PUNTO DE VENTA : LISTO PARA USAR
SHAO LIANSHU; HU LANG
INDEX BOOK (2008)
Pehmeäkantinen kirja
28,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
The life of the Lord Jesus Christ: a complete critical examination of the origin, contents, and connection of the Gospels. Trans
Lange; Johann Peter; Dods; Marcus; - . ed; Taylor; Sophia; tr; Ryland; J. E. (Jonathan Edwards); - . tr; Hu
Kniga po trebovaniyu
19,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Instability, Transition, and Turbulence
Hussaini, M. Y. (NASA Langley Research Center, Hampton, VA, USA); Kumar, A. (NASA Langley Research Center, Hampton, VA, USA); Hu
Springer-Verlag New York Inc. (1992)
Kovakantinen kirja
154,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
AI Techniques in Ev Motor and Inverter Fault Detection and Diagnosis
145,30 €
Institution of Engineering&Technology
Sivumäärä: 293 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2023, 19.12.2023 (lisätietoa)
Kieli: Englanti
Tuotesarja: Transportation
The motor drive system plays a significant role in the safety and function of electric vehicles as a bridge for power transmission. In order to enhance the efficiency and stability of the drive system, more and more studies based on AI technology are devoted to the fault detection and diagnosis of the motor drive system.


AI Techniques in EV Motor and Inverter Fault Detection and Diagnosis comprehensively covers the recently-developed AI applications for solving condition monitoring and fault detection issues in EV electrical conversion systems. AI-based fault detection and diagnosis (FDD) is divided into two main steps: feature extraction and fault classification. The application of different signal processing methods in feature extraction is discussed. In particular, the application of traditional machine learning and deep learning algorithms for fault classification is presented in detail. In addition, the characteristics of all techniques reviewed are summarised.


Chapters systematically address condition monitoring and fault detection in EV motors and inverters. Four case studies are including, covering AI based electric motor fault diagnosis, AI based inverter/IGBT fault diagnosis, AI based bearing fault diagnosis, and AI based gearbox fault diagnosis. Alongside each case study, the authors discuss the differences between conventional methods and AI-based methods in EV applications, and the motivation, advantages, shortcomings and challenges of AI-based methods. Finally, the latest developments, research gaps and future challenges in fault monitoring and diagnosis of motor faults are explored.


Providing a systematic and thorough exploration of its field, this book is a valuable resource for researchers and students with an interest in the applications of AI in electric vehicles, and for engineers and research and development professionals in the electric automotive industry.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
AI Techniques in Ev Motor and Inverter Fault Detection and Diagnosiszoom
Näytä kaikki tuotetiedot
ISBN:
9781839537622
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste