SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Hamed Habibi | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Guide to Convolutional Neural Networks - A Practical Application to Traffic-Sign Detection and Classification
Hamed Habibi Aghdam; Elnaz Jahani Heravi
Springer International Publishing AG (2017)
Kovakantinen kirja
73,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Guide to Convolutional Neural Networks : A Practical Application to Traffic-Sign Detection and Classification
Hamed Habibi Aghdam; Elnaz Jahani Heravi
Springer (2018)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
The Book of Tehran
Amir-Hossein Khorshidfar; Atoosa Afshin-Navid; Azardokht Bahrami; Fereshteh Ahmadi; Goli Taraghi; Hamed Habibi; Kou Asadi
Comma Press (2019)
Pehmeäkantinen kirja
14,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Guide to Convolutional Neural Networks - A Practical Application to Traffic-Sign Detection and Classification
73,70 €
Springer International Publishing AG
Sivumäärä: 282 sivua
Asu: Kovakantinen kirja
Painos: 1st ed. 2017
Julkaisuvuosi: 2017, 30.05.2017 (lisätietoa)
Kieli: Englanti
This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.



Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.

















This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Guide to Convolutional Neural Networks - A Practical Application to Traffic-Sign Detection and Classificationzoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste