Elizabeth Povinelli; Sophia Roosth; Kaushik Sunder Rajan; Luis Campos; Maria Chehonadskih; Ana Guzmán; Hao Liang; H Fang Spectormag GbR (2021) Pehmeäkantinen kirja
Xuhong Qian; Zhenjiang Zhao; Yufang Xu; Jian-He Xu; Y.-H. Zhang; Jingyan Zhang; Yang-Chun Yong; Fengxian Hu Royal Society of Chemistry (2015) Kovakantinen kirja
Reiner Kranz; Margit Kraus; Uwe Kraus; Katharina Mattich; Thomas M. Mayr; Regina Pfanger; Traudel Scheurlen; H Schneider Wellhöfer Verlag (2019) Pehmeäkantinen kirja
Entropy optimization is a useful combination of classical engineering theory (entropy) with mathematical optimization. The resulting entropyoptimization models have proved their usefulness with successful applications in areas such as image reconstruction, pattern recognition, statistical inference, queuing theory, spectral analysis, statistical mechanics, transportation planning, urban and regional planning, input-output analysis, portfolio investment, information analysis, and linear and nonlinear programming. While entropy optimization has been used in different fields, a good number of applicable solution methods have been loosely constructed without sufficient mathematical treatment. A systematic presentation with proper mathematical treatment of this material is needed by practitioners and researchers alike in all application areas. The purpose of this book is to meet this need. Entropy Optimization andMathematical Programming offers perspectives that meet the needs of diverse user communities so that the users can apply entropyoptimization techniques with complete comfort and ease. With this consideration, the authors focus on the entropy optimization problems in finite dimensional Euclidean space such that only some basic familiarity with optimization is required of the reader.