SULJE VALIKKO

avaa valikko

Hà Quang Minh | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



Covariances in Computer Vision and Machine Learning
Minh Hà Quang; Vittorio Murino
MORGAN&CLAYPOOL (2017)
Pehmeäkantinen kirja
97,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Covariances in Computer Vision and Machine Learning
Minh Hà Quang; Vittorio Murino
MORGAN&CLAYPOOL (2017)
Kovakantinen kirja
123,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Algorithmic Advances in Riemannian Geometry and Applications : For Machine Learning, Computer Vision, Statistics, and Optimizati
Hà Quang Minh (ed.); Vittorio Murino (ed.)
Springer (2016)
Kovakantinen kirja
121,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Algorithmic Advances in Riemannian Geometry and Applications : For Machine Learning, Computer Vision, Statistics, and Optimizati
Hà Quang Minh (ed.); Vittorio Murino (ed.)
Springer (2018)
Pehmeäkantinen kirja
121,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Covariances in Computer Vision and Machine Learning
Hà Quang Minh; Vittorio Murino
Springer International Publishing AG (2017)
Pehmeäkantinen kirja
54,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Covariances in Computer Vision and Machine Learning
97,80 €
MORGAN&CLAYPOOL
Sivumäärä: 170 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2017, 07.11.2017 (lisätietoa)
Kieli: Englanti
Tuotesarja: Synthesis Lectures on Computer
Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications.

In this book, we begin by presenting an overview of the {it finite-dimensional covariance matrix} representation approach of images, along with its statistical interpretation. In particular, we discuss the various distances and divergences that arise from the intrinsic geometrical structures of the set of Symmetric Positive Definite (SPD) matrices, namely Riemannian manifold and convex cone structures. Computationally, we focus on kernel methods on covariance matrices, especially using the Log-Euclidean distance.

We then show some of the latest developments in the generalization of the finite-dimensional covariance matrix representation to the {it infinite-dimensional covariance operator} representation via positive definite kernels. We present the generalization of the affine-invariant Riemannian metric and the Log-Hilbert-Schmidt metric, which generalizes the Log Euclidean distance. Computationally, we focus on kernel methods on covariance operators, especially using the Log-Hilbert-Schmidt distance. Specifically, we present a two-layer kernel machine, using the Log-Hilbert-Schmidt distance and its finite-dimensional approximation, which reduces the computational complexity of the exact formulation while largely preserving its capability. Theoretical analysis shows that, mathematically, the approximate Log-Hilbert-Schmidt distance should be preferred over the approximate Log-Hilbert-Schmidt inner product and, computationally, it should be preferred over the approximate affine-invariant Riemannian distance.

Numerical experiments on image classification demonstrate significant improvements of the infinite-dimensional formulation over the finite-dimensional counterpart. Given the numerous applications of covariance matrices in many areas of mathematics, statistics, and machine learning, just to name a few, we expect that the infinite-dimensional covariance operator formulation presented here will have many more applications beyond those in computer vision.

Series edited by: Gerard Medioni, Sven Dickinson

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Covariances in Computer Vision and Machine Learningzoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste