SULJE VALIKKO

avaa valikko

G. M. Dudley | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference
R.M. Dudley; M.G. Hahn; J. Kuelbs
Birkhauser Boston Inc (1992)
Kovakantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Georgia Reports, Charlton-65 Georgia, Book 1 (1903)
Thomas Usher Pulaski Charlton; R. M. Charlton; G. M. Dudley
KESSINGER PUB CO (2010)
Kovakantinen kirja
107,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Georgia Reports, Charlton-65 Georgia, Book 1 (1903)
Thomas Usher Pulaski Charlton; R M Charlton; G M Dudley
Kessinger Publishing (2010)
Kovakantinen kirja
109,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference
R.M. Dudley; M.G. Hahn; J. Kuelbs
Springer-Verlag New York Inc. (2012)
Pehmeäkantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Wrongs and Their Remedies. a Treatise on the Law of Torts
C. G. D. Addison; F. S. P. Wolferstan; James M. Dudley
Nabu Press (2010)
Pehmeäkantinen kirja
93,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference
129,90 €
Birkhauser Boston Inc
Sivumäärä: 512 sivua
Asu: Kovakantinen kirja
Painos: 1992
Julkaisuvuosi: 1992, 01.10.1992 (lisätietoa)
Kieli: Englanti
Tuotesarja: Progress in Probability 30
Probability limit theorems in infinite-dimensional spaces give conditions un­ der which convergence holds uniformly over an infinite class of sets or functions. Early results in this direction were the Glivenko-Cantelli, Kolmogorov-Smirnov and Donsker theorems for empirical distribution functions. Already in these cases there is convergence in Banach spaces that are not only infinite-dimensional but nonsep­ arable. But the theory in such spaces developed slowly until the late 1970's. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950's and developed strongly in the 1960's and 70's. We have in mind here also work on sample continuity and boundedness of Gaussian processes and random methods in harmonic analysis. By the mid-70's a substantial theory was in place, including sharp infinite-dimensional limit theorems under either metric entropy or geometric conditions. Then, modern empirical process theory began to develop, where the collection of half-lines in the line has been replaced by much more general collections of sets in and functions on multidimensional spaces. Many of the main ideas from probability in separable Banach spaces turned out to have one or more useful analogues for empirical processes. Tightness became "asymptotic equicontinuity. " Metric entropy remained useful but also was adapted to metric entropy with bracketing, random entropies, and Kolchinskii-Pollard entropy. Even norms themselves were in some situations replaced by measurable majorants, to which the well-developed separable theory then carried over straightforwardly.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Probability in Banach Spaces, 8: Proceedings of the Eighth International Conferencezoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste