SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Enmin Song | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



Selected Works of Donald L. Burkholder
Burgess Davis (ed.); Renming Song (ed.)
Springer (2011)
Kovakantinen kirja
134,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Bernstein Functions - Theory and Applications
René L. Schilling; Renming Song; Zoran Vondracek
De Gruyter (2012)
Kovakantinen kirja
223,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Selected Works of Donald L. Burkholder
Burgess Davis; Renming Song
Springer-Verlag New York Inc. (2016)
Pehmeäkantinen kirja
134,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Image Texture Analysis - Foundations, Models and Algorithms
Chih-Cheng Hung; Enmin Song; Yihua Lan
Springer Nature Switzerland AG (2019)
Kovakantinen kirja
66,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Image Texture Analysis - Foundations, Models and Algorithms
Chih-Cheng Hung; Enmin Song; Yihua Lan
Springer Nature Switzerland AG (2020)
Pehmeäkantinen kirja
48,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Selected Works of Donald L. Burkholder
134,60 €
Springer
Sivumäärä: 729 sivua
Asu: Kovakantinen kirja
Painos: 2011
Julkaisuvuosi: 2011, 25.02.2011 (lisätietoa)
Kieli: Englanti
Tuotesarja: Selected Works in Probability and Statistics
<font face="Arial">This book chronicles Donald Burkholder's thirty-five year study of martingales and its consequences. Here are some of the highlights.<br />
Pioneering work by Burkholder and Donald Austin on the discrete time martingale square function led to Burkholder and Richard Gundy's proof of inequalities comparing the quadratic variations and maximal functions of continuous martingales, inequalities which are now indispensable tools for stochastic analysis. Part of their proof showed how novel distributional inequalities between the maximal function and quadratic variation lead to inequalities for certain integrals of functions of these operators. The argument used in their proof applies widely and is now called the Burkholder-Gundy good lambda method. This uncomplicated and yet extremely elegant technique, which does not involve randomness, has become important in many parts of mathematics.<br />
The continuous martingale inequalities were then used by Burkholder, Gundy, and Silverstein to prove the converse of an old and celebrated theorem of Hardy and Littlewood. This paper transformed the theory of Hardy spaces of analytic functions in the unit disc and extended and completed classical results of Marcinkiewicz concerning norms of conjugate functions and Hilbert transforms. While some connections between probability and analytic and harmonic functions had previously been known, this single paper persuaded many analysts to learn probability.<br />
These papers together with Burkholder's study of martingale transforms led to major advances in Banach spaces. A simple geometric condition given by Burkholder was shown by Burkholder, Terry McConnell, and Jean Bourgain to characterize those Banach spaces for which the analog of the Hilbert transform retains important properties of the classical Hilbert transform.<br />
Techniques involved in Burkholder's usually successful pursuit of best constants in martingale inequalities have become central to extensive recent research into two well- known open problems, one involving the two dimensional Hilbert transform and its connection to quasiconformal mappings and the other a conjecture in the calculus of variations concerning rank-one convex and quasiconvex functions.<br />
This book includes reprints of many of Burkholder's papers, together with two commentaries on his work and its continuing impact.</font>

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Selected Works of Donald L. Burkholderzoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste