SULJE VALIKKO

avaa valikko

E.F. Mishchenko | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Asymptotic Methods in Singularly Perturbed Systems
E. F. Mishchenko; etc.
Kluwer Academic Publishers Group (1994)
Kovakantinen kirja
147,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Topology, Ordinary Differential Equations, Dynamical Systems, Volume 2 - Collection of Survey Papers on the 50th Anniversary of
E. F. Mishchenko
American Mathematical Society (1987)
Pehmeäkantinen kirja
159,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Selected Works - Prepared by the Steklov Mathematical Institute of the Academy of Sciences of the USSR on the occasion of his ni
I.M. Vinogradov; L.D. Faddeev; R.V. Gamkrelidze; A.A. Karatsuba; K.K. Mardzhanishvili; E.F. Mishchenko; Y.A. Bakhturin
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2014)
Pehmeäkantinen kirja
64,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Mathematical Theory of Optimal Processes
L. S. Pontryagin; V. G. Boltyanskii; R. V. Gamkrelidze; E. F. Mishchenko; K. N. Trirogoff; L. W. Neustadt
Gordon and Breach (1987)
Kovakantinen kirja
201,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Asymptotic Methods in Singularly Perturbed Systems
147,90 €
Kluwer Academic Publishers Group
Sivumäärä: 300 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 1994, 01.10.1994 (lisätietoa)

There are many books devoted to ordinary differential equations con­ taining small parameters (small perturbations). The investigation of the dependence of solutions, in a finite time interval, on regular perturbations (the small parameter regularly appears on the right-hand sides of the equa­ tions) was carried out by Poincare and was practically completed long ago. However, problems connected with singular perturbations still attract the attention of mathematicians. This is what we understand by a singularly perturbed system: a system of differential equations dependent on a small parameter is said to be singularly perturbed if, as the parameter tends to zero, Cauchy's resolvent operator for the main range of time values and initial conditions from bounded sets (or the Poincare operator) converges, in a suitable topology, to a limit object acting in a space of smaller dimension. In different cases this general idea of a singularly perturbed system becomes specific and leads to numerous important and interesting problems. A certain class of these problems was only recently considered in mono­ graphic literature. This class includes problems connected with the so-called relaxation oscillations, a phenomenon well known to physicists, mechani­ cians, chemists, and ecologists. Van der Pol, Andronov, Haag, Dorodnitsyn, Stoker, Zheleztsov and others were the first to study relaxation oscillations. A comprehensive study of this phenomenon is hindered by considerable mathematical difficulties and requires the development of new asymptotic methods in the theory of differential equations. These methods, interesting in themselves, lead to the statement of new mathematical problems.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Asymptotic Methods in Singularly Perturbed Systemszoom
Näytä kaikki tuotetiedot
ISBN:
9780306110344
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste