Carlos Pérez García; Yayo Herrero; Cristina García Morales; Aroa Moreno Durán; Alejandro Morellón Mariano; Richard Parra Episkaia (2018) Pehmeäkantinen kirja
Amalia Agut Gimenez; Cintia Garcia Echarri; Cristina Perez Vera; German Santamarina Pernas; James W. Swann; Josep Pa Milan Improve International Ltd (2019) Kovakantinen kirja
Joaquin Garcia-Alfaro; Ken Barker; Guillermo Navarro-Arribas; Cristina Pérez-Solà; Sergi Delgado-Segura; Sokratis Katsikas Springer International Publishing AG (2025) Pehmeäkantinen kirja
Gema Paramio Pérez; Bartolomé . . . et al. Almagro Torres; Cristina Conde García; María Ángeles de las Heras Pérez; Fernánd Servicio de Publicaciones - Universidad de Huelva (2022) Pehmeäkantinen kirja
Pedro Sáenz-López Buñuel; Gema Paramio Pérez; Bartolomé . . . et al. Almagro Torres; Cristina Conde García; de las Heras Pé Universidad De Huelva.serv.publicaciones (2021) Pehmeäkantinen kirja
This book contains the proceedings of the 14th International Conference on $p$-adic Functional Analysis, held from June 30-July 5, 2016, at the Universite d'Auvergne, Aurillac, France. Articles included in this book feature recent developments in various areas of non-Archimedean analysis: summation of p -adic series, rational maps on the projective line over Q p , non-Archimedean Hahn-Banach theorems, ultrametric Calkin algebras, G -modules with a convex base, non-compact Trace class operators and Schatten-class operators in p -adic Hilbert spaces, algebras of strictly differentiable functions, inverse function theorem and mean value theorem in Levi-Civita fields, ultrametric spectra of commutative non-unital Banach rings, classes of non-Archimedean Köthe spaces, p -adic Nevanlinna theory and applications, and sub-coordinate representation of p -adic functions. Moreover, a paper on the history of p -adic analysis with a comparative summary of non-Archimedean fields is presented.
Through a combination of new research articles and a survey paper, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.