Peter Constantin; Marco Cannone; Giovanni Gallavotti; Tetsuro Miyakawa; Alexandre V. Kazhikhov; Yves Meyer; Seiji Ukai Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2006) Pehmeäkantinen kirja
Peter Constantin; Arnaud Debussche; Giovanni P. Galdi; Michael Růžička; Gregory Seregin Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2013) Pehmeäkantinen kirja
Tristan Buckmaster; Sunčica Čanić; Peter Constantin; Alexander A. Kiselev; Luigi C. Berselli; Michael Růžička Springer Nature Switzerland AG (2020) Pehmeäkantinen kirja
Constantin presents the Euler equations of ideal incompressible fluids and the blow-up problem for the Navier-Stokes equations of viscous fluids, describing major mathematical questions of turbulence theory. These are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations, explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on nonlinear evolution equations and related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, localized in space or in time variable. Ukai discusses the asymptotic analysis theory of fluid equations, the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers.